Paolo Solareli

geologo

Geologia Geotecnica Idrogeologia Indagini Ambientali

SLRPLA54L27D458W P.IVA: 00841820392

v.Macello nº 6 - 48013 Fognano di Brisighella RA

> tel, 0546-85200 cell, 339-4269695 e-mail;

paolosolaroli@virgilio.it

INDAGINE GEOLOGICA @ TECNICA

modifica non sostanziale al piano particolareggiato approvato dal Comune di Faenza n° 1152 del 12/12/2005

Via Convertite - Caviro Distillerie srl

Comune di Faenza

ottobre 2013

Post Idad

RELAZIONE GEOLOGICA e TECNICA

INDICE

- 1) Premessa
- 2) Inquadramento geologico
- 3) Idrologia
- 4) Indagine geotecnica
- 5) Conclusioni
- *) Allegati:
- inquadramento area
- ubicazione prova
- relazione geofisica
- risultati penetrometria
- diagramma penetrometrico

1) PREMESSA

La presente relazione geologico-tecnica ha come oggetto di studio alcuni terreni siti in fregio a via Convertite, nell'area di pertinenza dello stabilimento CAVIRO Distillerie s.r.l. a Faenza.

Scopo dell'indagine è l'individuazione delle principali caratteristiche geomeccaniche dei terreni, nonchè la determinazione dell'eventuale primo livello di falda freatica, in corrispondenza del punto dove è prevista la realizzazione di un parcheggio per mezzi pesanti.

A tal fine si è saggiato il terreno mediante una prova penetrometrica statica, spinta fino ad una profondità di interesse geologico ed uno stendimento MASW, per determinare la Vs30. E' stato possibile limitare il numero delle prove geognostiche poichè in aree limitrofe sono state effettuate altre indagini di carattere geologico-tecnico, sempre all'interno dello stabilimento CAVIRO.

Per redigere correttamente la relazione, sono stati seguiti i dettami della normativa vigente, nello specifico:

- > circolare 02/02/2009 n° 617 del Consiglio Superiore dei Lavori Pubblici:
- > D.M. 14/01/2008 "norme tecniche per le costruzioni";
- > O.P.C.M. n° 3274 del 20/03/2003 e successivi aggiornamenti;
- circolare n° 36 del 27/07/2007 emanata dal Consiglio Superiore dei Lavori Pubblici "pericolosità sismica e criteri generali per la classificazione sismica del territorio nazionale";
- eurocodice 8 "indicazioni progettuali per la resistenza fisica delle strutture" (stesura 2003);
- L.R. n° 19/2008 art. 5 "norme per la riduzione del rischio sismico".

Questo elaborato, pertanto, seguendo i dettami della norma vigente e dello stato dell'arte, è finalizzato alla costruzione del modello geologico. Questo a sua volta è imprescindibile per la redazione del successivo modello geotecnico, facente parte della relazione d'opera geotecnica (allegata ad ogni singolo intervento progettuale).

In particolare, in relazione a quanto previsto nei paragrafi 3.2 e 7.11.2 delle NTC e nei paragrafi C3.2 e C6.2.2.5 della Circolare, verranno considerati i problemi geotecnici, la caratterizzazione della pericolosità sismica del sito, la caratterizzazione fisica e meccanica dei suoli, nonché la parametrizzazione dei valori che portano all'esecuzione delle verifiche agli stati limite.

2) INQUADRAMENTO GEOLOGICO

L'area in esame è situata su di un terreno livellato, ad una quota di circa cm. 40/60 più bassa rispetto al piano stradale. I lavori per l'allestimento della zona hanno comportato un'alterazione di quella che era l'originaria composizione del suolo, per tale motivo non è risultato facile dare una valutazione sulla litologia superficiale (principalmente terreno di riporto con alcune lenti limose e sabbia).

Quella sottostante è stata ricavata da quanto osservato direttamente nel corso delle indagini e dai dati forniti dalla penetrometria eseguita. Sotto lo spessore di terreno riportato (circa cm. 50) e fino a circa m. -3.00 sono state rinvenute sabbie con all'interno livelli di limo ed argilla, che risultano molto compatti. Oltre, si è in presenza di limo sabbioso, che si contraddistingue per il diverso grado di addensamento (superiore rispetto a quello dei limi sovrastanti) e dalla presenza di lenti limose ed argillose. Tale situazione permane su tutta la superficie indagata, fino alla profondità di circa m. 13.50 dal piano di campagna. Da tale quota fino al termine della prova, aumenta la frazione sabbiosa presente nel terreno, fino a divenire preponderante a fine prova.

Si può affermare che i terreni rinvenuti nel corso dell'indagine, in ragione dell'ubicazione, della litologia e della morfologia rilevata, sono di origine alluvionale. La successione stratigrafica suggerisce un graduale allontanamento del corso d'acqua che ha originato i depositi. La presenza di livelli a granulometria variabile testimonia diversi gradi di energia ed è indicativa anche di diversi ambienti deposizionali. Il periodo di inizio deposizione risale al Quaternario e più precisamente al Pleistocene medio/Olocene; nella Carta Geologica d'Italia questi terreni sono classificati come appartenenti al Sintema Emiliano-Romagnolo Superiore.

3) IDROLOGIA

Per quanto riguarda l'idrologia dell'area si nota un unico corso principale, il **fiume Lamone**, che ha l'alveo incassato con argini ad una quota pari rispetto ai campi circostanti e scorre ad alcuni chilometri dalla zona esaminata.

Nel corso dei millenni il fiume ha eroso ed invaso periodicamente con le sue ondate di piena i terreni circostanti il proprio letto ed ha raccolto i ruscelli formatisi in zona, vista la natura del terreno e le pendenze che si registrano in tutta l'area. Queste vicissitudini hanno contribuito a depositare i materiali che oggi si rinvengono nel corso delle indagini, con molte possibili variazioni litologiche; la granulometria dei depositi è infatti connessa alla capacità di trasporto solido della corrente fluviale. Come è noto, questa diminuisce la sua forza con l'aumentare della distanza dal corso d'acqua e di conseguenza in prossimità dei fiumi si trovano depositi di grossa pezzatura; con l'allontanarsi dagli alvei invece si rinvengono materiali sempre più fini.

Passando ad esaminare la situazione particolare dell'area si nota che esiste un corso d'acqua secondario importante (il canale Cerchia), sono presenti poi i fossi di raccolta e smaltimento delle acque piovane, realizzati per incanalarle verso le parti più depresse.

Nel corso dell'indagine è stato rilevato il livello della falda freatica alla profondità di m.-2.50 dall'attuale piano di campagna. Si deve tenere presente che il periodo di rilevazione (ottobre) è quello in cui il livello freatico risulta in una fase crescente e che in considerazione della litologia trovata si può ipotizzare un'escursione di oltre m. 1 nel corso dell'anno.

4) INDAGINE GEOTECNICA

L'indagine è stata portata a termine mediante l'esecuzione di n° 1 prova penetrometrica statica, spinta ad una quota interessante geologicamente dall' attuale piano di campagna (m. -21) ed uno stendimento geofisico che ha determinato i parametri del suolo tramite il metodo MASW.

Per la parte applicativa ci si è avvalsi di una apparecchiatura **Sunda Menhir** 100 kN; le cui modalità di utilizzo e l'analisi dei risultati sono in allegato.

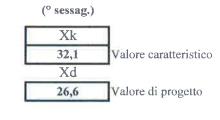
I risultati così ottenuti hanno evidenziato le buone caratteristiche geomeccaniche dei terreni indagati, fino dalla profondità di m. -0.60 circa, con Rp medio di oltre 25 kg/cmq. Alla quota di circa m. -1.80 si assiste ad un primo brusco aumento dei valori di carico ammissibile. Oltre tale profondità è stato registrato un ulteriore repentino aumento della Qc in corrispondenza di m. -7.20 ed uno a m. -12.20, causati dalla presenza di sabbia addensata.

Pur avendo rilevato la presenza di acqua di falda, la mancanza di strati sabbiosi poco addensati ed a granulometria fine, oltre alla generale presenza di una matrice argillosa più o meno abbondante, fa ritenere improbabile il verificarsi di fenomeni di liquefazione del suolo, anche nell'eventualità di sismi di elevata intensità (v. tabelle risultati prove). Solo per uno strato di spessore minimo, alla profondità di circa m. -6, il fattore di sicurezza risulta critico; vista la natura dell'intervento, non si ravvisano pericoli di cedimenti eccessivi.

Per completare l'indagine geotecnica, si devono caratterizzare i suoli indagati dal punto di vista sismico; nell'area, che ricade all'interno delle "zone sismiche di II categoria", secondo la situazione geologica riscontrata, in base all'Ordinanza P.C.M. 3274 del 20/03/03 e seg., con i dati a disposizione si possono includere questi terreni della zona di Faenza nella categoria C - depositi di sabbie e ghiaie mediamente addensate o di argille mediamente consistenti.

Ai sensi della normativa vigente, si è provveduto a determinare i parametri sismici del sito, utilizzando i risultati dello stendimento MASW effettuato (vedi relazione tecnica allegata).

Di seguito sono stati calcolati i valori caratteristici del suolo, al fine di ottenere il modello geotecnico:

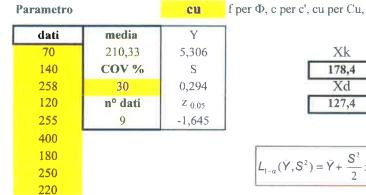

modello geotecnico - riferito a Coesione, Angolo di Attrito Interno, **Modulo Edometrico**

5° percentile distribuzione della media-POCHI DATI

Per GRANDI volumi di rottura e distribuzione normale (Φ)

(ciò avviene in genere nelle fondazioni superficiali, specie quando B è grande)

Parametro	Φ
dati	media dati
41	33,67
34	COV
32	7
31	n° dati
30	6
34	



$$\mathbf{x}_{k} = \overline{\mathbf{x}} - 1.645 \left(\frac{\sigma}{\sqrt{n}} \right)$$

$$z_{0.05}$$
 -1,6449

5° percentile distribuzione della media-POCHI DATI

Per GRANDI volumi di rottura e distribuzione log-normale (Cu, c') (ciò avviene in genere nelle fondazioni superficiali, specie quando B è grande)

Xk	
178,4	Valore caratteristic

Xd 127,4 Valore di progetto

(kPa)

 $L_{1-\alpha}(\bar{Y}, S^2) = \bar{Y} + \frac{S^2}{2} \pm Z_{1-\alpha/2} * \sqrt{\frac{S^2}{n} + \frac{S^4}{2(n-1)}}$

Con n > 1; se n=1, Xk = inv.lognorm(0.05, Y,S)

calcolo della media dei valori del Modulo Edometrico (espresso in kg/cmq)

strati coesivi

80,6

strati incoerenti

115,1

Come si può notare, nella tabella precedente fanno la comparsa i dati relativi al suolo indagato; si ricorda che le unità di misura adottate sono le seguenti:

 Φ = angolo di attrito interno del suolo, espresso in gradi sessagesimali °;

cu = coesione non drenata, espressa in kPa;

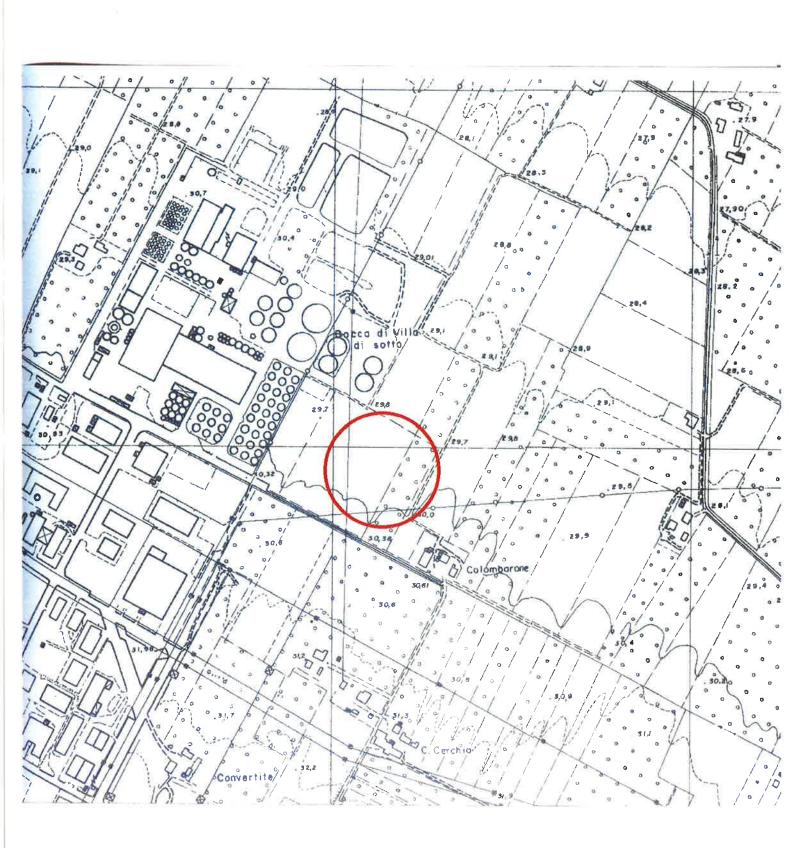
Eed = modulo edometrico, espresso in kg/cmq;

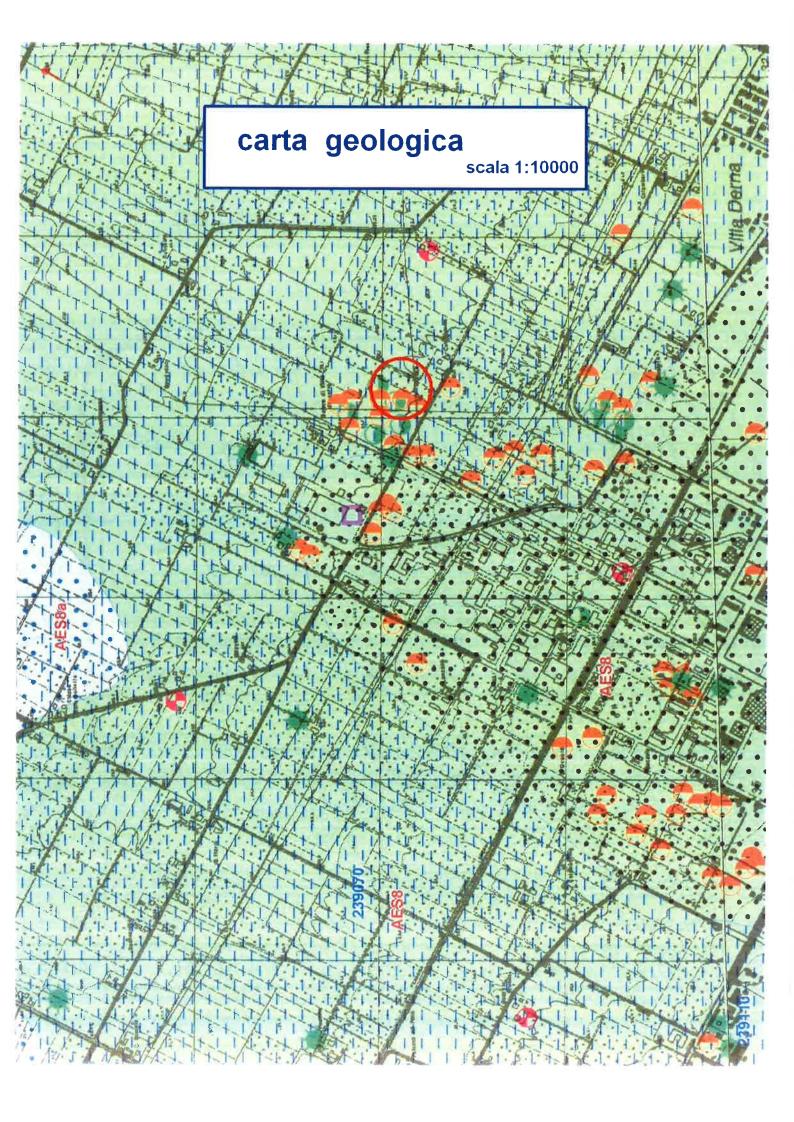
5) **CONCLUSIONI**

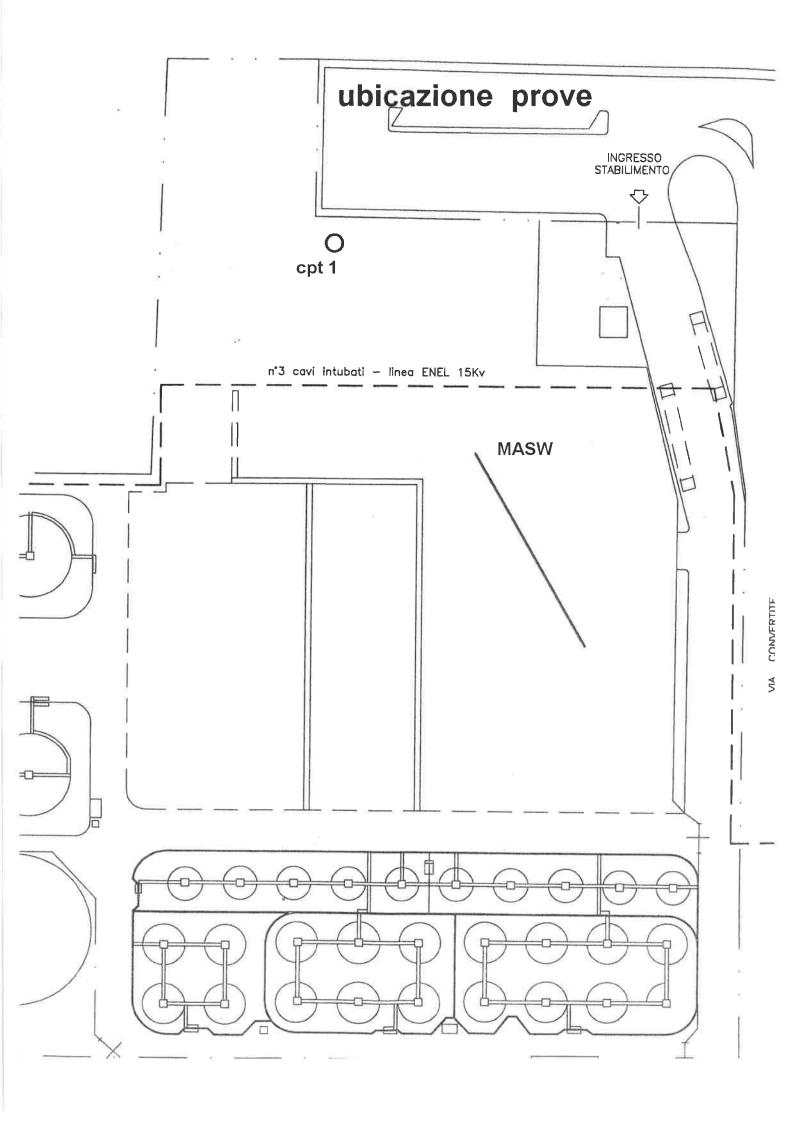
In base ai risultati forniti dalle prove effettuate, e da quanto è stato osservato nel corso dell'indagine, non sono emersi fattori tali da sconsigliare la realizzazione in progetto. Alla luce di quanto sopra esposto ed in considerazione delle caratteristiche geomeccaniche dei terreni non si impongono particolari limitazioni, oltre quelle di legge.

Al fine di ottenere dei buoni risultati, soprattutto nel lungo termine, si consiglia di attenersi alle indicazioni di seguito riportate:

- decorticare tutta l'area destinata a parcheggio e rullarla leggermente;
- eseguire il riempimento con materiale di buona qualità (il riciclato di macerie o di cemento da ottimi risultati), avendo cura di rullare convenientemente gli strati (non più di cm. 30 ogni strato);
- porre in opera su tutta la superficie del TNT di grammatura minima pari a 400 g/mg;
- portarsi a livello con uno strato di misto stabilizzato granulometricamente dello spessore di 20/30 cm. e rullarlo convenientemente.


Si ricorda che per ottenere dei risultati ottimali, la rullatura deve essere eseguita in passate longitudinali e trasversali rispetto ad un lato del parcheggio, la superficie deve essere umidificata e le ultime passate devono essere statiche (cioè senza vibrazione).




Porto blow

inquadramento area

scala 1:5000

IND.A.G.O. s.n.c.
Indagini e Opere Ambientali e Geologiche
via Balzan, 1 - 45100 Rovigo - tel. 0425-25185
www.indago-rovigo.it

Rapporto Tecnico:

Indagine sismica mediante la tecnica MASW attiva e passiva presso lo stabilimento Distillerie Caviro in Comune di Faenza (RA) ai sensi delle NTC (DM 14/01/08) e dell'Atto di indirizzo e coordinamento tecnico ai sensi dell'art. 16, c.1, della L.R. 20/2000 per "Indirizzi per gli studi di microzonazione sismica in Emilia-Romagna per la pianificazione territoriale e urbanistica"

Dott. Geol. Enrico Farinatti

IND.A.G.O. s.n.c.

Rovigo, Ottobre 2013

Committente: Dott. Paolo Solaroli

Via Macello, 6

48013 - Fognano (RA)

Premessa

Lo scrivente, su incarico del Dott. Geol. Paolo Solaroli, ha eseguito un'indagine sismica mediante il metodo MASW (Multi Channel Analysis of Surface Waves) attivo e passivo, presso lo stabilimento Distillerie Caviro, in Comune di Faenza (RA), ai sensi del DM 14/01/2008.

Metodo Masw

Il metodo utilizzato sfrutta le onde di superficie (onde di Rayleigh) e il fenomeno della dispersione della stesse (variazione della velocità di fase con il variare della frequenza). Solitamente si tratta di onde di Rayleigh in caso di acquisizioni terrestri. In particolare, poiché le onde di Rayleigh si propagano lungo la superficie topografica in uno strato di profondità circa pari alla lunghezza d'onda, in mezzi stratificati verticalmente eterogenei, le diverse lunghezze d'onda, relative alla propagazione di armoniche a diversa frequenza, si propagano con velocità di fase che dipende dalle proprietà dei materiali interessati dalla propagazione. Ciò fa sì che la velocità di fase sia funzione della frequenza dell'onda stessa. Tale dipendenza prende il nome di dispersione geometrica e viene rappresentata tramite la curva di dispersione (velocità di fase vs. frequenza). La propagazione delle onde di superficie è un fenomeno multimodale, una stessa frequenza può propagarsi contemporaneamente a diverse velocità, e ogni velocità viene chiamata modo.

Dalla curva di dispersione sperimentale è possibile caratterizzare il sottosuolo in termini di variazione della velocità di propagazione delle onde di taglio (V_{SV}) , e quindi del modulo di rigidezza al taglio dinamico (G_0) , in funzione della profondità.

L'utilizzo delle prove per onde superficiali ha molti campi di applicazione, dalla stima della $V_{\rm S30}$ richiesta dalle NTC 08, alla valutazione dei parametri utili a studi approfonditi di pericolosità sismica; dalla caratterizzazione di discariche, alla valutazione della profondità e dello stato di alterazione di substrati superficiali in presenza di falde acquifere, la caratterizzazione di versanti e depositi.

Generalmente il metodo assume come modello del terreno un mezzo elastico-lineare a strati omogenei. Nella maggior parte delle applicazioni, la tecnica è quindi utilizzata per stimare un profilo verticale 1D di VS, ma vi sono molte applicazioni in siti con moderate variabilità laterali in cui il metodo consente di stimare distribuzioni di VS pseudo-2D/3D.

Il metodo per onde superficiali maggiormente utilizzato prende comunemente il nome di MASW (Multichannel Analysis of Surface Waves) e si basa sulla misura delle onde superficiali eseguita con un dispositivo lineare di sensori sismici e con sorgenti artificiali.

Il calcolo del profilo delle velocità delle onde di Rayleigh, V(fase)/freq., può essere convertito nel profilo Vs/profondità. Il metodo passivo sfrutta il rumore naturale, mentre il metodo attivo sfrutta sorgenti sismiche (massa battente).

Tale metodo non è univoco e quindi il modello che ne scaturisce è un modello teorico; per questo motivo è preferibile operare in presenza di dati di taratura (come nel caso specifico) onde ricavare il modello reale.

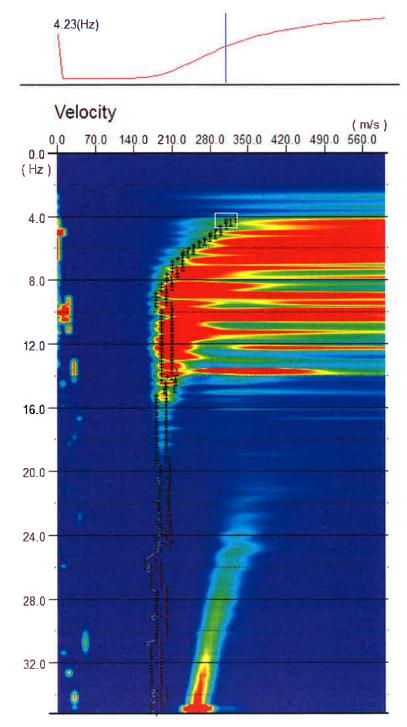
Modalità esecutive

Si è optato per l'analisi delle onde di superficie dal momento che tale tecnica ha dimostrato ampiamente la sua affidabilità e la capacità risolutiva. Il metodo prevede l'utilizzo di strumentazione classica per sismica a rifrazione ad elevata dinamica (24 bits di conversione A/D), con geofoni a bassa frequenza (preferibilmente da 4,5 Hz).

Nella fattispecie per le misure è stato utilizzato un sismografo a 24 canali mod. RAS24 a 24 bits con scarico dei dati direttamente su p.c..

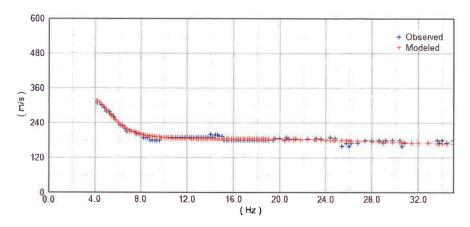
E' stato realizzato 1 profilo con array lineare, con distanza di 2m come offset intergeofonico e 5m come distanza di battuta.

Sono state effettuate 10 registrazioni da 30 secondi ciascuna, per il metodo passivo e una registrazione da 2 secondi, per il metodo attivo. I geofoni usati sono di tipo verticale da 4.5 Hz e grazie alla dinamica dello strumento (24 bits, range dinamico 117 dB), consentono la registrazione delle onde di superficie con contenuto in frequenza fino a circa 2 Hz.

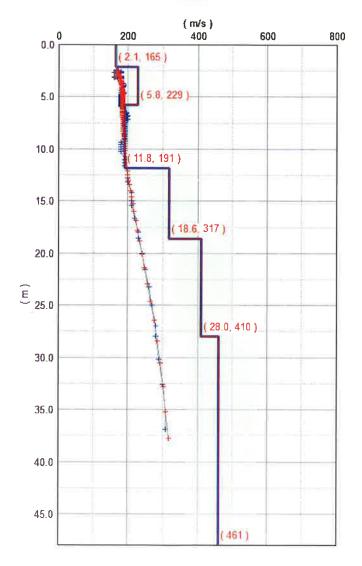

I dati acquisiti in campagna sono stati quindi elaborati e, grazie ai dati di taratura forniti, è stato possibile ricostruire un modello Vs/profondità attendibile.

Qualora necessario, in fase di elaborazione, è possibile effettuare il picking della curva Velocità/frequenza per il solo modo fondamentale di vibrazione, oppure per diversi modi di vibrazione (fino al decimo). Nella fattispecie si è ricorsi al picking dei primi 2 modi di vibrazione.

Linea 1


L'indagine eseguita ha permesso la determinazione dell'andamento della velocità delle Vs fino a oltre 35 m di profondità.

Di seguito si riportano le immagini relative alla curva di dispersione delle onde di Rayleigh e del modello che ne deriva previa inversione dei dati. L'errore RMS calcolato è dello 0.64%.


CURVA DI DISPERSIONE CUMULATIVA METODI ATTIVO E PASSIVO

Dispersion Curves

CURVA DI DISPERSIONE MISURATA (BLU) E CALCOLATA (ROSSO)

Models

MODELLO RISULTANTE DALL'INVERSIONE DEI DATI

Come già detto in precedenza, per quanto concerne i dettagli relativi alle caratteristiche geometriche dello stendimento, sono stati utilizzati 24 geofoni in linea con interdistanza di 2 m.

La V_{s30} è stata ricavata dalla formula:

$$V_{s30} = \frac{30}{\sum hi/v_i}$$

Nel caso specifico è risultato:

$V_{s30} = 275 \text{m/s}$

Si tratta quindi di un suolo tipo C (S = 1.40 secondo le NTC).

Vengono inoltre fornite tabelle recanti la classificazione del sito e lo spettro di risposta elastico relativo, ricavato considerando una probabilità di superamento del 10% in 50 anni (tempo di ritorno 475 anni). Tale condizione corrisponde allo **stato limite ultimo di salvaguardia della vita** (secondo NTC). E' inoltre stata inserita la classificazione del sito in base alle vigenti normative regionali.

Verifica a liquefazione

L'indagine sismica e la CPT effettuate, rilevano la presenza di livelli di natura granulare a partire da circa 12 m di profondità dal piano campagna, oltre ad un sottile livello di limo sabbioso con spessore di circa 40-60 cm e ubicato a circa 6 m da p.c. Come previsto dalle linee guida AGI, per tali livelli è stata eseguita una verifica alla liquefazione.

Utilizzando quindi le velocità Vs misurate e supponendo la presenza di una percentuale di limo e/o argilla compresa tra il 5% e il 35%, nonché una magnitudo di riferimento M = 5.91 (valore indicato dalle ZS9), è stato calcolato il coefficiente di sicurezza (previa una "normalizzazione" dei dati ottenuti per riportarli alla magnitudo di riferimento):

$$Fs = CRR_{7.5}/CSR_{7.5}$$
 dove:

 $CRR_{7.5}$ = rapporto di resistenza ciclica (per M=7.5)

 $CSR_{7.5}$ = rapporto di tensione ciclica (per M=7.5)

I risultati ottenuti (vedere grafico e tabella allegati) indicano che per i livelli oltre i 12 m di profondità non sussiste alcun rischio di liquefazione. Per quanto riguarda invece il sottile livello intorno ai 6 m di profondità, nel grafico della liquefazione si trova sul limite del campo liquefacibile. Inoltre i valori delle Vs1 (velocità delle onde di taglio normalizzate alla pressione litostatica di 100 kPa) risultano, se pur di poco, inferiori al livello di soglia Vs1*

(210 m/s), al di sotto del quale possono verificarsi fenomeni di liquefazione. Potrebbe sussistere quindi un moderato rischio.

Rovigo, Marzo 2013

Dott. Geol. Enrico Farinatti

IND.A.G.O. s.n.c.
di Merola - Fasimenti & Co.
Enulo Fasuna H

ALLEGATI

CLASSIFICAZIONE DEL SITO NTC 2008

Data: Ottobre 2013

 Località
 Distillerie Caviro - Comune di Faenza (RA)

 Coordinate
 44,303662 N 11,8714169 E (UTM WGS84)

Metodo di indagine MASW Attivo e Passivo

(misura Vr)

Strumentazione utilizzata Sismografo ABEM RAS-24, 24 canali, 24 bits

 Metodo di energizzazione
 Rumore naturale+10 kg

 Geometria stendimento:
 24 geofoni - interasse 2 m

RISPOSTA SISMICA LOCALE

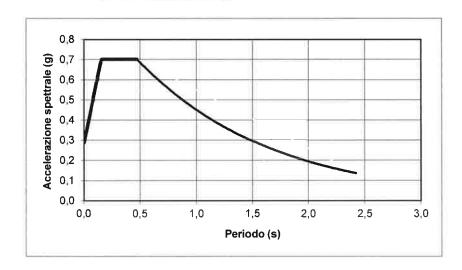
(si vedano le tabelle sottostanti per ricavare i valori del coeff, Cc e del coeff, amplificazione S)

Categorie di suolo di fondazione:

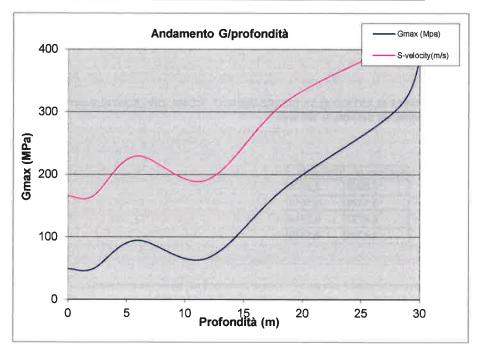
		Ss	Cc	S=S _S *S _T
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di Vs30 superiori a 800 m/s, eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo pari a 3 m,	1,00	1,00	1,00
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs30 compresi tra 360 m/s e 800 m/s (ovvero NSPT30 > 50 nei terreni a grana grossa e Cu30 > 250 kPa nei terreni a grana fina).	1,20	1,40	1,20
С	Depositi di terrani a grana grossa mediamente addensati o terrani a-grana fina mediamente consistenti con spessori sunenon a 30 m, caratterizzati da un graduate nigiporamente delle proprietà meccaniche con la profondità e da valori di Ve30 compresi (ra 185 nus e 360 m/s (ovvero 15 < NSPT, 30 < 90 nei terrant a grana grossa e 76 < Cu30 < 250 kPa del terrani a grana fina).	1,40	1,56	1,40
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs30 inferiori a 180 m/s (ovvero NSPT,30 < 15 nel terreni a grana grossa e Cu30 < 70 kPa nei terreni a grana fina).		2,27	1,65
E	Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m, posti sul substrato di riferimento (con Vs > 800 m/s).		1,85	1,45
S1	Depositi di terreni caratterizzati da valori di Vs30 inferiori a 100 m/s (ovvero 10 < Cu30 < 20 kPa), che includono uno strato di almeno 8 m di terreni a grana fina di bassa consistenza, oppure che includono almeno 3 m di torba o di argille altamente organiche.	Servono		
S2	Depositi di terreni suscettibili di liquefazione, di argille sensitive o qualsiasi altra categoria di sottosuolo non classificabile nei tipi precedenti.	studi speciali		

l parametri a/g, F_0 e T^{*}_{C} vengono forniti dalla normativa

Categorie Topografiche:


		St	
T1	Superficie planeggiante, pendil e rillevi isolati con inclinazione media i ≤ 15°	3	
T2	Pendii con inclinazione media i > 15°	1,2	valore alla sommità del pendio
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° ≤ i ≤ 30°	1,2	valore della cresta del rilievo
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°	1.4	valore della cresta del rilievo

Le sovraesposte categorie topografiche si riferiscono a configurazioni geometriche prevalentemente bidimensionali, creste o dorsali allungate, e devono essere considerate nella definizione dell'azione sismica se di altezza maggiore di 30 m.


SPETTRO DI RISPOSTA ELASTICO @ 5% SMORZAMENTO - COMP. ORIZZONTALE (NTC 2008) Possibilità di superamento del 10% in 100 anni

 $T_0 = agxS$ Tb=Tc/3 $Tc=Cc^*T_c^*$ $Td=4.0xa_g/g+1.6$

Ascisse (s)	Ordinate
0,0000	0,2870
0,1576	0,7014
0,4727	0,7014
2,4200	0,1370

Depth(m)	S-velocity(m/s)	Gmax (Mpa) ρ (t/mc)		
0,0	165	49	1,80	
2,1	165	49	1,80	
5,8	229	94	1,80	
11,8	191	66	1,80	
18,6	317	181	1,80	
28,0	410	303	1,80	
30,0	461	383	1,80	

Vs₃₀ (m/s) = 275

CLASSIFICAZIONE DEL SITO Atto di indirizzo e coordinamento tecnico ai sensi dell'art. 16, c. 1, della L.R. 20/2000 per "Indirizzi per gli studi di microzonazione sismica in Emilia-Romagna per la classificazione territoriale e urbanistica

Località Distillerie Caviro - Comune di Faenza (RA)

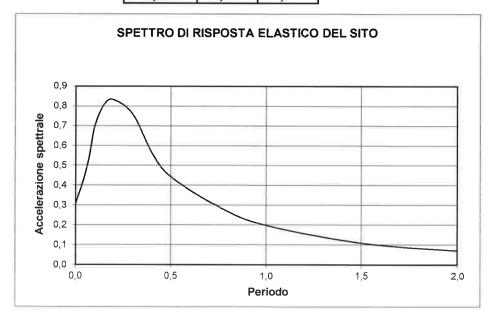
Metodo di indagine MASW Attivo e Passivo

(misura Vr)

Strumentazione utilizzata Sismografo ABEM RAS-24, 24 canali, 24 bits

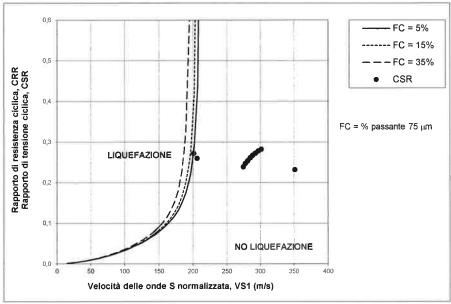
Metodo di energizzazioneRumore naturale+10 kgGeometria stendimento:24 geofoni - interasse 2 m

Valore di accelerazione massima orizzontale di picco al suolo a_{refg} 0,205


Tabella per il calcolo dei coefficienti di amplificazione sismica (PIANURA 2)

Vs30	F.A.
200	1,5
250	1,5
300	1,5
350	1,4
400	1,4
450	1,4
500	1,3
600	1,1
700	1,0
800	1,0

SPETTRO DI RISPOSTA ELASTICO @ 5% SMORZAMENTO - COMP. ORIZZONTALE Possibilità di superamento del 10% in 50 anni


Atto di indirizzo e coordinamento tecnico ai sensi dell'art. 16, c. 1, della L.R. 20/2000 per "Indirizzi per gli studi di microzonazione sismica in Emilia-Romagna per la classificazione territoriale e urbanistica"

T (s)	Sa/a _{ref}	Sa/a _g		
0,000	1,000	0,308		
0,040	1,389	0,427		
0,070	1,759	0,541		
0,100	2,283	0,702		
0,150	2,637	0,811		
0,200	2,707	0,833		
0,300	2,466	0,758		
0,400	1,840	0,566		
0,500	1,445	0,444		
0,750	0,955	0,294		
1,000	0,645	0,198		
1,500	0,355	0,109		
2,000	0,231	0,071		

VERIFICA ALLA LIQUEFAZIONE

profondità (m)	Vs	Vs1	CSR	F. = CRR7 JCSR75
6,0	191	206	0,260	4,49
7,0	191	201	0,271	2,11
12,0	317	302	0,282	0,84
13,0	317	297	0,278	0,81
14,0	317	292	0,273	0,78
15,0	317	288	0,267	0,76
16,0	317	285	0,261	0,74
17,0	317	281	0,254	0,72
18,0	317	278	0,247	0,71
19,0	317	274	0,239	0,69
20,0	410	351	0,231	1,56

La velocità delle onde sismiche viene ricondotta ad un valore Vs1, ovvero ad un valore normalizzato ad una tensione efficace $p_a=100\ kPa$ attraverso la:

$$V_{S1} = C_V^* V_S = V_S^* (p_a/\sigma'_{v0})^{0.25}$$

RAPP. TENSIONALE CICLICO CSR = $\tau_{media}/\sigma' = 0.65*(a_{max}/g)*(\sigma_v/\sigma'_v)*r_d$

a_{max} = accelerazione di picco al piano campagna

g = accelerazione di gravità

 $\sigma v/\sigma' v$ = tensione totale ed efficace nel sottosuolo

rd = coefficiente riduttivo dell'azione sismica alla profondità d'interesse

che tiene conto della deformabilità del sottosuolo

COEFFICIENTE DI SICUREZZA ALLA LIQUEFAZIONE $F_s = CRR_{7.5}/CSR_{7.5}$

CSR riferito ad terremoto di magnitudo 7.5 $(CSR)_{M=7.5} = (CSR)_{M}/MSF$

fattore di scala per la magnitudo MSF = 6.9*EXP(-M/4)-0.058

RAPP, DI RESISTENZA CICLICA (riferito a M = 7.5) $CRR_{7.5} = 0.022x(V_{S1}/100)^2 + 2.8x(1/(V_{S1}^* - V_{S1}) - 1/V_{S1}^*)$

PROVA PENETROMETRICA STATICA

Committente: CAVIRO Cantiere: park Località: Faenza			
---	--	--	--

Caratteristiche Strumentali GOUDA 100 kN

Rif. Norme	ASTM D3441-86
Diametro Punta conica meccanica	35,7
Angolo di apertura punta	60
Area punta	10
Superficie manicotto	150
Passo letture (cm)	20
Costante di trasformazione Ct	10

PROVE PENETROMETRICHE STATICHE (CONE PENETRATION TEST)

CPT

PROVE CPT: METODOLOGIA DELL' INDAGINE

La prova penetrometrica statica CPT (di tipo meccanico) consiste essenzialmente nella misura della resistenza alla penetrazione di una punta meccanica di dimensioni e caratteristiche standardizzate, infissa nel terreno a velocità costante (v = 2 cm / sec ± 0.5 cm / sec).

La penetrazione viene effettuata tramite un dispositivo di spinta (martinetto idraulico), opportunamente ancorato al suolo con coppie di coclee ad infissione, che agisce su una batteria doppia di aste (aste coassiali esterne cave e interne piene), alla cui estremità è collegata la punta.

Lo sforzo necessario per l'infissione è misurato per mezzo di centralina estensimetrica, collegata al martinetto mediante una testa di misura idraulica.

La punta conica (del tipo telescopico) è dotata di un manicotto sovrastante, per la misura dell'attrito laterale : punta / manicotto tipo "Begemann".

Le dimensioni della punta / manicotto sono standardizzate, e precisamente :

- diametro Punta Conica meccanica Ø = 35,7 mm

- area di punta $Ap = 10 \text{ cm}^2$

- angolo di apertura del cono α = 60 $^{\circ}$

- superficie laterale del manicotto Am = 150 cm²

Sulla batteria di aste esterne è installato un anello allargatore per diminuire l'attrito sulle aste, facilitandone l'infissione.

REGISTRAZIONE DATI.

Una cella di carico, che rileva gli sforzi di infissione, è montata all'interno di un'unità rimovibile, chiamata "selettore", che preme alternativamente sull'asta interna e su quella esterna.

Durante la fase di spinta le aste sono azionate automaticamente da un comando idraulico. L'operatore deve solamente controllare i movimenti di spinta per l'infissione delle aste.

I valori acquisiti dalla cella di carico sono visualizzati sul display di una Sistema Acquisizione Automatico (qualora presente) o sui manometri.

Per mezzo di un software (in alcuni strumenti) è possibile sia durante l'acquisizione, che in un secondo momento a prove ultimate trasferire i dati ad un PC.

Le letture di campagna (che possono essere rilevate dal sistema di acquisizione sia in Kg che in Kg/cm²) durante l'infissione sono le seguenti:

- Lettura alla punta LP = prima lettura di campagna durante l'infissione relativa all'infissione della sola punta
- Lettura laterale LT = seconda lettura di campagna relativa all'infissione della punta+manicotto

METODOLOGIA DI ELABORAZIONE

I dati rilevati della prova sono quindi una coppia di valori per ogni intervallo di lettura costituiti da LP (Lettura alla punta) e LT (Lettura della punta + manicotto), le relative resistenze vengono quindi desunte per differenza, inoltre la resistenza laterale viene conteggiata 20 cm sotto (alla quota della prima lettura della punta).

Trasferiti i dati ad un PC vengono elaborati da un programma di calcolo "STATIC PROBING" della GeoStru. La resistenze specifiche Qc (Resistenza alla punta RP) e Ql (Resistenza Laterale RL o fs attrito laterale specifico che considera la superficie del manicotto di frizione) vengono desunte tramite opportune costanti e sulla base dei valori specifici dell'area di base della punta e dell'area del manicotto di frizione laterale tenendo in debito conto che: Αp

= l'area punta (base del cono punta tipo "Begemann") = 10 cm²

Am = area del manicotto di frizione = 150 cm²

Ct = costante di trasformazione = 10

La loro elaborazione, interpretazione e visualizzazione grafica consente di "catalogare e parametrizzare" il suolo attraversato con un'immagine in continuo, che permette anche di avere un raffronto sulle consistenze dei vari livelli attraversati e una correlazione diretta con sondaggi geognostici per la caratterizzazione stratigrafica.

La sonda penetrometrica permette inoltre di riconoscere abbastanza precisamente lo spessore delle coltri sul substrato, la quota di eventuali falde e superfici di rottura sui pendii, e la consistenza in generale del terreno. I dati di uscita principali sono RP (Resistenza alla punta) e RL (Resistenza laterale o fs, attrito laterale specifico che considera la superficie del manicotto di frizione) che il programma calcola automaticamente; inoltre viene calcolato il Rapporto RP/RL (Rapporto Begemann 1965) e il Rapporto RL/RP (Rapporto Schmertmann 1978 – FR %-).

I valori sono calcolati con queste formule:

$$Qc(RP) = (LP \times Ct) / 10 \text{ cm}^2.$$

Resistenza alla punta

Q1 (RL) (fs) =
$$[(LT - LP) \times Ct] / 150 \text{ cm}^2$$
.

Resistenza laterale

Qc (RP) = Lettura alla punta LP x Costante di Trasformazione Ct / Superficie Punta Ap

Ql (RL) (fs) = Lettura laterale LT- Lettura alla punta LP x Costante di Trasformazione Ct / Am area del manicotto N.B.

$$- Ap = 10 cm^2 e Am = 150 cm^2$$

- la resistenza laterale viene conteggiata 20 cm sotto (alla quota della prima lettura della punta)

CORRELAZIONI

Scegliendo il tipo di interpretazione litologica (consigliata o meno a seconda del tipo di penetrometro utilizzato) si ha in automatico la stratigrafia con il passo dello strumento ed interpolazione automatica degli strati. Il programma esegue inoltre il grafico (per i vari autori) Profondità/Valutazioni litologiche, per visualizzare in maniera diretta l'andamento delle litologie presenti lungo la verticale indagata.

CORRELAZIONI GEOTECNICHE

Scegliendo il tipo di interpretazione litologica si ha in automatico la stratigrafia con il passo dello strumento ed interpolazione automatica degli strati.

Ad ogni strato mediato il programma calcola la Qc media, la fs media, il peso di volume naturale medio, il comportamento geotecnico (coesivo, incoerente o coesivo-incoerente), ed applica una texture.

PROVA ... Nr.1

Committente: CAVIRO Strumento utilizzato: GOUDA 100 kN Prova eseguita in data: 17/10/2013 Profondità prova: 21,00 mt Località: Faenza

Profondità	Lettura punta	Lettura laterale	qc	fs	qc/fs	fs/qcx100
(m)	(Kg/cm²)	(Kg/cm²)	(Kg/cm²)	(Kg/cm²)	Begemann	(Schmertmann)
0,20	0,0	0,0	0,0	1,2	0,0	· · · · · ·
0,40	20,0	38,0	20,1	0,2	100,5	1,0
0,60	33,0	36,0	33,1	1,3	25,5	3,9
0,80	33,0	53,0	33,1	1,7	19,5	5,1
1,00	44,0	70,0	44,1	1,5	29,4	3,4
1,00	36,0	58,0	36,3	1,1	33,0	3,0
		42,0	25,3	1,3	19,5	5,1
1,40	25,0					5,4
1,60	31,0	50,0	31,3	1,7	18,4	
1,80	26,0	52,0	26,3	1,5	17,5	5,7
2,00	24,0	46,0	24,3	1,3	18,7	5,3
2,20	24,0	43,0	24,4	1,1	22,2	4,5
2,40	24,0	41,0	24,4	1,1	22,2	4,5
2,60	33,0	50,0	33,4	1,2	27,8	3,6
2,80	27,0	45,0	27,4	1,1	24,9	4,0
3,00	14,0	30,0	14,4	1,6	9,0	11,1
3,20	23,0	47,0	23,6	1,4	16,9	5,9
3,40	29,0	50,0	29,6	2,5	11,8	8,4
3,60	43,0	80,0	43,6	2,0	21,8	4,6
3,80	42,0	72,0	42,6	1,5	28,4	3,5
4,00	28,0	50,0	28,6	1,0	28,6	3,5
4,20	20,0	35,0	20,7	0,9	23,0	4,3
4,40	24,0	37,0	24,7	1,2	20,6	4,9
4,60	26,0	44,0	26,7	1,5	17,8	5,6
4,80	28,0	51,0	28,7	1,6	17,9	5,6
5,00	26,0	50,0	26,7	1,1	24,3	4,1
			20,7		23,8	4,2
5,20	23,0	40,0	23,8	1,0		6.0
5,40	24,0	39,0	24,8	1,5	16,5	6,0
5,60	33,0	55,0	33,8	1,2	28,2	3,6
5,80	29,0	47,0	29,8	1,7	17,5	5,7
6,00	32,0	57,0	32,8	0,9	36,4	2,
6,20	23,0	36,0	24,0	1,3	18,5	5,4
6,40	35,0	55,0	36,0	0,9	40,0	2,:
6,60	34,0	47,0	35,0	1,3	26,9	3,
6,80	31,0	50,0	32,0	1,2	26,7	3,8
7.00	30,0	48,0	31,0	1,2	25,8	3.9
7,20	26,0	44,0	27,1	1,3	20,8	
7,40	28,0	48,0	29,1	1,1	26,5	3,
7,60	31,0	47,0	32,1	1,2	26,8	3,
7,80	28,0	46,0	29,1	1,4	20,8	4,
8,00	35,0	56,0	36,1	1,1	32,8	3,0
8,20	28,0	45,0	29,2	1,5	19,5	5,
			34,2	1,8	19,0	
8,40	33,0					
8,60	29,0		30,2	1,7	17,8	
8,80	33,0		34,2	1,5	22,8	
9,00	36,0		37,2	1,7	21,9	4,
9,20	32,0		33,4	1,5	22,3	
9,40	38,0		39,4	1,6	24,6	
9,60	41,0		42,4	1,7	24,9	4,
9,80	37,0		38,4	1,9	20,2	
10,00	40,0	68,0	41,4	1,7	24,4	
10,20	35,0		36,5	1,1	33,2	3,
10,40	27,0		28,5	1,9	15,0	6,
10,60	30,0		31,5	2,1	15,0	
10,80	28,0		29,5	1,8	16,4	
11,00	31,0		32,5	1,1	29,5	
	33,0		34,7	1,4	24.8	
11,20	2.2.0	50.00				

11,60	58,0	81,0	59,7	2,1	28,4	3,5
11,80	65,0	96,0	66,7	2,4	27,8	3,6
12,00	52,0	88,0	53,7	3,7	14,5	6,9
12,20	54,0	109,0	55,8	3,0	18,6	5,4
12,40	85.0	130,0	86,8	2,3	37.7	2,6
12,60	72,0	106,0	73,8	3,3	22,4	4,5
12,80	78,0	127,0	79,8	2,8	28,5	4,5 3,5
13,00	58,0	100,0	59,8	1,3	46,0	2,2
13,20	54,0	74,0	55,9	2,1	26,6	3,8
13,40	55,0	86,0	56,9	1,8	31,6	3,8 3,2
13,60	43,0	70,0	44,9	2,0	22,5	4,5 2,7
13,80	42,0	72,0	43,9	1,2	36,6	2,7
14,00	40,0	58,0	41,9	1,4	29.9	3,3
14,20	49,0	70,0	51,1	1,6	31,9	3,1
14,40	45,0	69,0	47,1	1,5	31,4	3,2
14,60	35,0	58,0	37,1	1,9	19,5	5,1
14,80	48,0	77,0	50,1	1,5	33,4	3,0
15,00	42,0	65.0	44,1	2,3	19,2	5.2
15,20	35,0	70,0	37,2	2,1	17.7	5,6
15,40	29,0	60,0	31,2	1,6	19,5	5,1
15,60	21,0	45,0	23,2	1,9	12,2	8,2
15,80	24,0	53,0	26,2	1,9	13,8	8,2 7,3
16,00	58,0	87,0	60,2	2.3	26,2	3,8
16,20	65,0	100,0	67,3	3,7	18,2	5.5
16,40	64,0	120,0	66,3	3,9	17,0	3,8 5,5 5,9
16,60	84,0	142,0	86,3	3,7	23,3	4.3
16,80	77,0	132,0	79,3	2,6	30,5	3,3 3,5
17,00	91,0	130,0	93,3	3,3	28,3	3,5
17,20	75,0	124,0	77,5	1,5	51,7	1,9
17,40	64,0	86,0	66,5	1,5	44,3	1,9 2,3 2,2 2,7
17,60	60,0	82,0	62,5	1,4	44,6	2,2
17,80	54,0	75,0	56,5	1,5	37,7	2,7
18,00	48,0	70,0	50,5	1,7	29,7	3,4
18,20	29,0	54,0	31,6	2,0	15,8	6,3
18,40	30,0	60,0	32,6	1,3	25,1	4,0
18,60	26,0	46.0	28,6	1,4	20,4	4,9
18,80	22,0	43,0	24,6	2,8	8,8	11,4
19,00	85,0	127,0	87.6	3,5	25,0	4,0
19,20	68,0	120,0	70,8	2,7	26,2	3,8
19,40	80,0	121.0	82,8	1,6	51,8	1,9
19,60	56,0	80,0	58,8	1,5	39,2	2,6
19,80	51,0	74.0	53,8	1,7	31,6	3,2
20,00	40,0	66,0	42,8	4,7	9,1	11,0
20,20	60,0	130,0	62,9	6,2	10,1	9,9
20,40	100,0	193,0	102,9	7,2	14,3	9,9 7,0
20,60	127,0	235,0	129,9	5,3	24,5	4.1
20,80	170,0	250,0	172,9	5,5	31,4	3,2
21,00	172,0	255,0	174,9	0,0		0,0

Prof. Strato	qc Media	fs Media	Gamma	Comp. Geotecnico	Descrizione
(m)	(Kg/cm²)	(Kg/cm²)	Medio (t/m³)	• 31	
0,20	0,0	1,2	0,0		Stima non eseguibile
0,40	20,1	0,2	2,0	Incoerente	Sabbie e sabbie con ghiaia
1,00	36,8	1,5	2,1	Incoerente	Limi e argille.
1,20	36,3	1,1	2,1	Incoerente	Limi sabbiosi e Sabbie limose
2,80	27,1	1,3	2,0	Incoerente	Limi e argille.
3,00	14,4	1,6	1,9	Coesivo	argilla
3,20	23,6	1,4	2,0	Incoerente	Limi e argille
3,40	29,6	2,5	2,0	Coesivo	argilla
5,80	29,5	1,4	2,0	Incoerente	Limi e argille.
6,00	32,8	0,9	2,1	Incoerente	Limi sabbiosi e Sabbie limose
6,20	24,0	1.3	2,0	Incoerente	Limi e argille.
6,40	36,0	0,9	2,1	Incoerente	Limi sabbiosi e Sabbie limose
7,80	30,8	1,2	2,0	Incoerente	Limi e argille
8,00	36,1	1,1	2,1	Incoerente	Limi sabbiosi e Sabbie limose
10,00	36,0	1,7	2,1	Incoerente	Limi e argille
10,20	36,5	1,1	2,1	Incoerente	Limi sabbiosi e Sabbie limose

10,60	30,0	2,0	2,0	Coesivo	argilla
11,80	43,0	1,7	2,1	Incoerente	Limi e argille.
12,00	53,7	3,7	2,1	Coesivo	argilla
12,20	55,8	3,0	2,1	Incoerente	Limi e argille.
12,40	86,8	2,3	2,2	Incoerente	Limi sabbiosi e Sabbie limose
12,80	76,8	3,1	2,2	Incoerente	Limi e argille.
13,00	59,8	1,3	2,2	Incoerente	Limi sabbiosi e Sabbie limose
13,20	55,9	2,1	2,1	Incoerente	Limi e argille.
13,40	56,9	1,8	2,1	Incoerente	Limi sabbiosi e Sabbie limose
13,60	44,9	2,0	2,1	Incoerente	Limi e argille.
13,80	43,9	1,2	2,1	Incoerente	Limi sabbiosi e Sabbie limose
14,00	41,9	1,4	2,1	Incoerente	Limi e argille.
14,40	49,1	1,6	2,1	Incoerente	Limi sabbiosi e Sabbie limose
14,60	37,1	1,9	2,1	Incoerente	Limi e argille.
14,80	50,1	1,5	2,1	Incoerente	Limi sabbiosi e Sabbie limose
15,40	37,5	2,0	2,1	Incoerente	Limi e argille.
15,80	24,7	1,9	2,0	Coesivo	argilla
16,60	70,0	3,4	2,2	Incoerente	Limi e argille.
16,80	79,3	2,6	2,2	Incoerente	Limi sabbiosi e Sabbie limose
17,00	93,3	3,3	2,2	Incoerente	Limi e argille.
17,80	65,8	1,5	2,2	Incoerente	Limi sabbiosi e Sabbie limose
18,60	35,8	1,6	2,1	Incoerente	Limi e argille.
18,80	24,6	2,8	2,0	Coesivo	argilla
19,20	79,2	3,1	2,2	Incoerente	Limi e argille.
19,80	65,1	1,6	2,2	Incoerente	Limi sabbiosi e Sabbie limose
20,40	69,5	6,0	2,2	Coesivo	argilla
20,60	129,9	5,3	2,3	Incoerente	Limi e argille.
21,00	173,9	2,8	2,3	Incoerente	Limi sabbiosi e Sabbie limose

STIMA PARAMETRI GEOTECNICI

TERRENI COESIVI

Coesione non drenata

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazione	Cu
	(m)	(Kg/cm²)	(Kg/cm²)	litostatica totale (Kg/cm²)	litostaticaefficace (Kg/cm²)		(Kg/cm²)
Strato 6	3,00	14,4	1,6	0,5	0,5	Terzaghi	0,7
Strato 8	3,40	29,6	2,5	0,6	0,6	Terzaghi	1,5
Strato 17	10,60	30,0	2,0	2,1	1,3	Terzaghi	1,5
Strato 19	12,00	53,7	3,7	2,4	1,5	Terzaghi	2,7
Strato 33	15,80	24,7	1,9	3,2	1,9	Terzaghi	1,2
Strato 39	18,80	24,6	2,8	3,8	2,2	Terzaghi	
Strato 42	20,40	69,5	6,0	4,1	2,4	Terzaghi	3,5

Modulo Edometrico

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazione	Eed
	(m)	(Kg/cm²)	(Kg/cm²)	litostatica totale (Kg/cm²)	litostatica efficace (Kg/cm²)		(Kg/cm²)
Strato 6	3,00	14,4	1,6	0,5	0,5	Metodo generale	48,4
Strato 8	3,40	29,6	2,5	0,6	0,6	Metodo generale	59,2
Strato 17	10,60	30,0	2,0	2,1	1,3	Metodo generale	60,0
Strato 19	12,00	53,7	3,7	2,4	1,5	Metodo generale	107,4
Strato 33	15,80	24,7	1,9	3,2	1,9	Metodo generale	49,4
Strato 39	18,80	24,6	2,8	3,8	2,2	Metodo generale	49,2
Strato 42	20,40	69,5	6,0	4,1	2,4	Metodo generale	139,0

Modulo di deformazione non drenato Eu

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazione	Eu
	(m)	(Kg/cm²)	(Kg/cm²)	litostatica totale	litostatica efficace		(Kg/cm²)
				(Kg/cm²)	(Kg/cm²)		
Strato 6	3,00	14,4	1,6	0,5	0,5	Cancelli 1980	520,6
Strato 8	3,40	29,6	2,5	0,6	0,6	Cancelli 1980	1089,2
Strato 17	10,60	30,0	2,0	2,1	1,3	Cancelli 1980	1076,5
Strato 19	12,00	53,7	3,7	2,4	1,5	Cancelli 1980	1959,1
Strato 33	15,80	24,7	1,9	3,2	1,9	Cancelli 1980	856,1
Strato 39	18,80	24,6	2,8	3,8	2,2	Cancelli 1980	839,0
Strato 42	20,40	69,5	6,0	4,1	2,4	Cancelli 1980	2516,5

Modulo di deformazione a taglio

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Modulo di
	(m)	(Kg/cm²)	(Kg/cm²)	litostatica totale (Kg/cm²)	litostatica efficace (Kg/cm²)	е	def.taglio (Kg/cm²)
Strato 6	3,00	14,4	1,6	0,5		lmai & Tomauchi	142,9
Strato 8	3,40	29,6	2,5	0,6	0,6	lmai & Tomauchi	221,9
Strato 17	10,60	30,0	2,0	2,1	1,3	Imai & Tomauchi	223,7
Strato 19	12,00	53,7	3,7	2,4	1,5	Imai & Tomauchi	319,3
Strato 33	15,80		1,9	3,2	1,9	lmai & Tomauchi	198,7
Strato 39	18,80	24,6	2,8	3,8	2,2	lmai & Tomauchi	198,2
Strato 42	20,40	69,5	6,0	4,1	2,4	Imai & Tomauchi	373,8

Grado di sovraconsolidazione

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazione	Ocr
	(m)	(Kg/cm²)	(Kg/cm²)	litostatica totale (Kg/cm²)	litostatica efficace (Kg/cm²)		
Strato 6	3,00	14,4	1,6	0,5	0,5	Piacentini Righi 1978	>9
Strato 8	3,40	29,6	2,5	0,6	0,6	Piacentini Righi 1978	>9
Strato 17	10,60	30,0	2,0	2,1	1,3	Piacentini Righi 1978	>9
Strato 19	12,00	53,7	3,7	2,4	1,5	Piacentini Righi 1978	>9
Strato 33	15,80	24,7	1,9	3,2	1,9	Piacentini Righi 1978	6,99
Strato 39	18,80	24,6	2,8	3,8	2,2	Piacentini Righi 1978	8,48
Strato 42	20,40	69,5	6,0	4,1	2,4	Piacentini Righi 1978	>9

Peso unità di volume

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazione	Peso unità
	(m)	(Kg/cm²)	(Kg/cm²)	litostatica totale	litostatica efficace		di volume
				(Kg/cm²)	(Kg/cm²)		(t/m³)
Strato 6	3,00	14,4	1,6	0,5	0,5	Meyerhof	1,9
Strato 8	3,40	29,6	2,5	0,6	0,6	Meyerhof	2,0
Strato 17	10,60	30,0	2,0	2,1	1,3	Meyerhof	2,0
Strato 19	12,00	53,7	3,7	2,4	1,5	Meyerhof	
Strato 33	15,80	24,7	1,9	3,2	1,9	Meyerhof	
Strato 39	18,80	24,6	2,8	3,8	2,2	Meyerhof	
Strato 42	20,40	69,5	6,0	4,1	2,4	Meyerhof	

Peso unità di volume saturo

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazione	Peso unità
	(m)	(Kg/cm²)	(Kg/cm²)	litostatica totale	litostatica efficace		di volume
				(Kg/cm²)	(Kg/cm²)		sat.(t/m³)
Strato 6	3,00	14,4	1,6	0,5	0,5	Meyerhof	2,0
Strato 8	3,40	29,6	2,5	0,6	0,6	Meyerhof	2,1
Strato 17	10,60	30,0	2,0	2,1	1,3	Meyerhof	2,1
Strato 19	12,00	53,7	3,7	2,4	1,5	Meyerhof	2,2
Strato 33	15,80	24,7	1,9	3,2	1,9	Meyerhof	2,1
Strato 39	18,80	24,6	2,8	3,8	2,2	Meyerhof	2,1
Strato 42	20,40	69,5	6,0	4,1	2,4	Meyerhof	2,3

Velocità onde di taglio

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazione	Vs
	(m)	(Kg/cm²)	(Kg/cm²)	litostatica totale (Kg/cm²)	litostatica efficace (Kg/cm²)		(m/s)
Strato 6	3,00	14,4	1,6	0,5	0,5	Jamiolkowski et al 1985	226,21
Strato 8	3,40	29,6	2,5	0,6	0,6	Jamiolkowski et al 1985	261,09
Strato 17	10,60	30,0	2,0	2,1	1,3	Jamiolkowski et al 1985	261,79
Strato 19	12,00	53,7	3,7	2,4	1,5	Jamiolkowski et al 1985	293,95
Strato 33	15,80	24,7	1,9	3,2	1,9	Jamiolkowski et al 1985	251,86
Strato 39	18,80	24,6	2,8	3,8	2,2	Jamiolkowski et al 1985	251,65
Strato 42	20,40	69,5	6,0	4,1	2,4	Jamiolkowski et al 1985	309,43

TERRENI INCOERENTI

Angolo di resistenza al taglio

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazione	Angolo
	(m)	(Kg/cm²)	(Kg/cm²)	litostatica totale	litostatica efficace		d'attrito
				(Kg/cm²)	(Kg/cm²)		(°)
Strato 2	0,40	20,1	0,2	0,0	0,0	Schmertmann	42,0
Strato 3	1,00	36,8	1,5	0,1	0,1	Schmertmann	41,3
Strato 4		36,3	1,1	0,2	0,2	Schmertmann	39,0
Strato 5	2,80	27,1	1,3	0,4	0,4	Schmertmann	35,0
Strato 7	3,20	23,6	1,4	0,6	0,5	Schmertmann	32,9
Strato 9	5,80	29,5	1,4	0,9	0,7	Schmertmann	33,1
Strato 10	6,00	32,8	0,9	1,1	0,8	Schmertmann	33,0
Strato 11	6,20	24,0	1,3	1,2	0,8	Schmertmann	31,3
Strato 12		36,0	0,9	1,2	0,9	Schmertmann	33,2
Strato 13	7,80	30,8	1,2	1,4	0,9	Schmertmann	32,1
Strato 14	8,00	36,1	1,1	1,6	1,0	Schmertmann	32,6
Strato 15	10,00	36,0	1,7	1,8	1,1	Schmertmann	32,2
Strato 16	10,20	36,5	1,1	2,0	1,3	Schmertmann	31,9
Strato 18	11,80	43,0	1,7	2,2	1,4	Schmertmann	32,4
Strato 20	12,20	55,8	3,0	2,4	1,5	Schmertmann	33,4
Strato 21	12,40	86,8	2,3	2,5	1,5	Schmertmann	35,7
Strato 22	12,80	76,8	3,1	2,5	1,5	Schmertmann	34,9
Strato 23	13,00	59,8	1,3	2,6	1,6	Schmertmann	33,6
Strato 24	13,20	55,9	2,1	2,6	1,6	Schmertmann	33,2
Strato 25	13,40	56,9	1,8	2,7	1,6	Schmertmann	33,2
Strato 26	13,60	44,9	2,0	2,7	1,6	Schmertmann	31,9
Strato 27	13,80	43,9	1,2	2,8	1,7	Schmertmann	31,8
Strato 28		41,9	1,4			Schmertmann	31,5
Strato 29	14,40	49,1	1,6	2,9	1,7	Schmertmann	32,2

Strato 30	14,60	37,1	1,9	2,9	1,8	Schmertmann	30,7
Strato 31	14,80	50,1	1,5	3,0	1,8	Schmertmann	32,2
Strato 32	15,40	37,5	2,0	3,1	1,8	Schmertmann	30,6
Strato 34	16,60	70,0	3,4	3,3	1,9	Schmertmann	33,6
Strato 35	16,80	79,3	2,6	3,4	2,0	Schmertmann	34,1
Strato 36	17,00	93,3	3,3	3,5	2,0	Schmertmann	34,9
Strato 37	17,80	65,8	1,5	3,6	2,1	Schmertmann	33,0
Strato 38	18,60	35,8	1,6	3,7	2,2	Schmertmann	29,7
Strato 40	19,20	79,2	3,1	3,9	2,3	Schmertmann	33,6
Strato 41	19,80	65,1	1,6	4,0	2,3	Schmertmann	32,5
Strato 43	20,60	129,9	5,3	4,2	2,4	Schmertmann	35,9
Strato 44	21,00	173,9	2,8	4,3	2,5	Schmertmann	37,3

Modulo di Youna

	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm ²)	Tensione litostatica totale (Kg/cm²)	Tensione litostatica efficace (Kg/cm²)	Correlazione	Modulo di Young (Kg/cm²)
Strato 2	0,40	20,1	0,2	0,0	0,0	ISOPT-1 1988 Ey(50)	80,
Strato 3	1,00	36,8	1,5	0,1	0,1	ISOPT-1 1988 Ey(50)	167,
Strato 4	1,20	36,3	1,1	0,2	0,2	ISOPT-1 1988 Ey(50)	237,
Strato 5	2,80	27,1	1,3	0,4	0,4		271,
Strato 7	3,20	23,6	1,4	0,6	0,5	ISOPT-1 1988 Ey(50)	279,
Strato 9	5,80	29,5	1,4	0,9	0,7	ISOPT-1 1988 Ey(50)	343,
Strato 10	6,00	32,8	0,9	1,1	0,8	ISOPT-1 1988 Ey(50)	385,
Strato 11	6,20	24,0	1,3	1,2	0,8	ISOPT-1 1988 Ey(50)	317,
Strato 12	6,40	36,0	0,9	1,2	0,9	ISOPT-1 1988 Ey(50)	414,
Strato 13	7,80	30,8	1,2	1,4	0,9	ISOPT-1 1988 Ey(50)	384,
Strato 14	8,00	36,1	1,1	1,6	1,0	ISOPT-1 1988 Ey(50)	435,
Strato 15	10,00	36,0	1,7	1,8	1,1	ISOPT-1 1988 Ey(50)	447,
Strato 16	10,20	36,5	1,1	2,0	1,3	ISOPT-1 1988 Ey(50)	463,
Strato 18	11,80	43,0	1,7	2,2	1,4	ISOPT-1 1988 Ey(50)	527,
Strato 20	12,20	55,8	3,0	2,4	1,5	ISOPT-1 1988 Ey(50)	632,
Strato 21	12,40	86,8	2,3	2,5	1,5	ISOPT-1 1988 Ey(50)	819,
Strato 22	12,80	76,8	3,1	2,5	1,5	ISOPT-1 1988 Ey(50)	772,
Strato 23	13,00	59,8	1,3	2,6	1,6	ISOPT-1 1988 Ey(50)	671,
Strato 24	13,20	55,9	2,1	2,6	1,6	ISOPT-1 1988 Ey(50)	647,
Strato 25	13,40	56,9	1,8	2,7	1,6	ISOPT-1 1988 Ey(50)	656,
Strato 26	13,60	44,9	2,0	2,7	1,6	ISOPT-1 1988 Ey(50)	566,
Strato 27	13,80	43,9	1,2	2,8	1,7	ISOPT-1 1988 Ey(50)	560,
Strato 28	14,00	41,9	1,4	2,8	1,7	ISOPT-1	545,

					1988 Ey(50)	
14,40	49,1	1,6	2,9	1,7	ISOPT-1	607,9
					1988 Ey(50)	
14,60	37,1	1,9	2,9	1,8	ISOPT-1	507,3
					1988 Ey(50)	
14,80	50,1	1,5	3,0	1,8		620,9
15,40	37,5	2,0	3,1	1,8		515,5
16,60	70,0	3,4	3,3	1,9		784,8
16,80	79,3	2,6	3,4	2,0		853,5
17,00	93,3	3,3	3,5	2,0		941,2
1=00						
17,80	65,8	1,5	3,6	2,1		770,9
10.60	25.0	1.6	2.7	2.2		500.1
18,60	35,8	1,6	3,/	2,2		520,1
10.20	70.2	2.1	2.0	2.2		0047
19,20	79,2	3,1	3,9	2,3		884,6
10.00	65.1	1.6	4.0	2.2		788,7
19,80	65,1	1,0	4,0	2,3		/00,/
20.60	120.0	5.2	1.2	2.4		1200,8
20,00	129,9	5,5	4,2	2,4		1200,0
21,00	173,9	2,8	4,3	2,5	ISOPT-1	1393,6
21 00						
		14,60 37,1 14,80 50,1 15,40 37,5 16,60 70,0 16,80 79,3 17,00 93,3 17,80 65,8 18,60 35,8 19,20 79,2 19,80 65,1	14,60 37,1 1,9 14,80 50,1 1,5 15,40 37,5 2,0 16,60 70,0 3,4 16,80 79,3 2,6 17,00 93,3 3,3 17,80 65,8 1,5 18,60 35,8 1,6 19,20 79,2 3,1 19,80 65,1 1,6	14,60 37,1 1,9 2,9 14,80 50,1 1,5 3,0 15,40 37,5 2,0 3,1 16,60 70,0 3,4 3,3 16,80 79,3 2,6 3,4 17,00 93,3 3,3 3,5 17,80 65,8 1,5 3,6 18,60 35,8 1,6 3,7 19,20 79,2 3,1 3,9 19,80 65,1 1,6 4,0	14,60 37,1 1,9 2,9 1,8 14,80 50,1 1,5 3,0 1,8 15,40 37,5 2,0 3,1 1,8 16,60 70,0 3,4 3,3 1,9 16,80 79,3 2,6 3,4 2,0 17,00 93,3 3,3 3,5 2,0 17,80 65,8 1,5 3,6 2,1 18,60 35,8 1,6 3,7 2,2 19,20 79,2 3,1 3,9 2,3 19,80 65,1 1,6 4,0 2,3	14,40 49,1 1,6 2,9 1,7 ISOPT-1 1988 Ey(50) 14,60 37,1 1,9 2,9 1,8 ISOPT-1 1988 Ey(50) 14,80 50,1 1,5 3,0 1,8 ISOPT-1 1988 Ey(50) 15,40 37,5 2,0 3,1 1,8 ISOPT-1 1988 Ey(50) 16,60 70,0 3,4 3,3 1,9 ISOPT-1 1988 Ey(50) 16,80 79,3 2,6 3,4 2,0 ISOPT-1 1988 Ey(50) 17,00 93,3 3,3 3,5 2,0 ISOPT-1 1988 Ey(50) 17,80 65,8 1,5 3,6 2,1 ISOPT-1 1988 Ey(50) 18,60 35,8 1,6 3,7 2,2 ISOPT-1 1988 Ey(50) 19,20 79,2 3,1 3,9 2,3 ISOPT-1 1988 Ey(50) 19,80 65,1 1,6 4,0 2,3 ISOPT-1 1988 Ey(50)

Modulo Edometrico

odulo Edol	Prof. Strato	qc	fs	Tensione	Tensione litostatica	Correlazione	Modulo
	(m)	(Kg/cm ²)	(Kg/cm ²)	litostatica totale (Kg/cm²)	efficace (Kg/cm²)		Edometrico (Kg/cm ²)
Strato 2	0,40	20,1	0,2	0,0	0,0	Buisman - Sanglerat	100,5
Strato 3	1,00	36,8	1,5	0,1	0,1	Buisman - Sanglerat	110,4
Strato 4	1,20	36,3	1,1	0,2	0,2	Buisman - Sanglerat	108,9
Strato 5	2,80	27,1	1,3	0,4	0,4	Buisman - Sanglerat	135,5
Strato 7	3,20	23,6	1,4	0,6	0,5	Buisman - Sanglerat	118,0
Strato 9	5,80	29,5	1,4	0,9	0,7	Buisman - Sanglerat	147,5
Strato 10	6,00	32,8	0,9	1,1	0,8	Buisman - Sanglerat	98,4
Strato 11	6,20	24,0	1,3	1,2	0,8	Buisman - Sanglerat	120,0
Strato 12	6,40	36,0	0,9	1,2	0,9	Buisman - Sanglerat	108,0
Strato 13	7,80	30,8	1,2	1,4	0,9	Buisman - Sanglerat	92,4
Strato 14	8,00	36,1	1,1	1,6	1,0	Buisman - Sanglerat	108,3
Strato 15	10,00	36,0	1,7	1,8	1,1	Buisman - Sanglerat	108,0
Strato 16	10,20	36,5	1,1	2,0	1,3	Buisman - Sanglerat	109,5
Strato 18	11,80	43,0	1,7	2,2	1,4	Buisman - Sanglerat	129,0
Strato 20	12,20	55,8	3,0	2,4	1,5	Buisman - Sanglerat	83,7

130,2	Buisman -	1,5	2,5	2,3	86,8	12,40	Strato 21
1150	Sanglerat	1.7	2.5	2.1	76,8	12,80	Strato 22
115,2	Buisman -	1,5	2,5	3,1	/6,8	12,80	Strato 22
00.7	Sanglerat	1.6	2.6	1.2	50.0	12.00	Stunt - 22
89,7	Buisman -	1,6	2,6	1,3	59,8	13,00	Strato 23
	Sanglerat			2.1	55.0	12.20	0 24
83,9	Buisman -	1,6	2,6	2,1	55,9	13,20	Strato 24
	Sanglerat						
85,4	Buisman -	1,6	2,7	1,8	56,9	13,40	Strato 25
	Sanglerat						
134,7	Buisman -	1,6	2,7	2,0	44,9	13,60	Strato 26
	Sanglerat						
131,7	Buisman -	1,7	2,8	1,2	43,9	13,80	Strato 27
	Sanglerat						
125,7	Buisman -	1,7	2,8	1,4	41,9	14,00	Strato 28
	Sanglerat						
73,7	Buisman -	1,7	2,9	1,6	49,1	14,40	Strato 29
	Sanglerat						
111,3	Buisman -	1,8	2,9	1,9	37,1	14,60	Strato 30
<u> </u>	Sanglerat	´	´			,	
75,2	Buisman -	1,8	3,0	1,5	50,1	14,80	Strato 31
,-	Sanglerat	-,-	-,-	-,-	, -	/·	
112,5	Buisman -	1,8	3,1	2,0	37,5	15,40	Strato 32
112,0	Sanglerat	*,**	0,1	_,,,	.,.,.	,.,	
105,0	Buisman -	1,9	3,3	3,4	70,0	16,60	Strato 34
105,0	Sanglerat	1,5	3,5	5, 1	70,0	10,00	Strate 5 T
119,0	Buisman -	2,0	3,4	2,6	79,3	16,80	Strato 35
(17,0	Sanglerat	2,0	3,4	2,0	77,5	10,00	Strate 33
140,0	Buisman -	2,0	3,5	3,3	93,3	17,00	Strato 36
140,0	Sanglerat	2,0	5,5	3,3	75,5	17,00	Strato 30
98,7	Buisman -	2,1	3,6	1,5	65,8	17,80	Strato 37
98,/		2,1	3,0	1,3	03,8	17,60	Strato 37
107.4	Sanglerat	2.2	2.7	1.0	25.0	10.60	C44- 20
107,4	Buisman -	2,2	3,7	1,6	35,8	18,60	Strato 38
	Sanglerat			2.1	50.0	10.00	G: : 40
118,8	Buisman -	2,3	3,9	3,1	79,2	19,20	Strato 40
	Sanglerat						
97,7	Buisman -	2,3	4,0	1,6	65,1	19,80	Strato 41
	Sanglerat						
194,9	Buisman -	2,4	4,2	5,3	129,9	20,60	Strato 43
	Sanglerat						
260,9	Buisman -	2,5	4,3	2,8	173,9	21,00	Strato 44
	Sanglerat						

Modulo di deformazione a taglio

	Prof. Strato	qc	fs	Tensione	Tensione litostatica	Correlazione	G
	(m)	(Kg/cm ²)	(Kg/cm ²)	litostatica totale	efficace		(Kg/cm ²)
				(Kg/cm ²)	(Kg/cm ²)		
Strato 2	0,40	20,1	0,2	0,0	0,0	Imai & Tomauchi	175,2
Strato 3	1,00	36,8	1,5	0,1	0,1	Imai & Tomauchi	253,4
Strato 4	1,20	36,3	1,1	0,2	0,2	Imai & Tomauchi	251,3
Strato 5	2,80	27,1	1,3	0,4	0,4	Imai & Tomauchi	210,2
Strato 7	3,20	23,6	1,4	0,6	0,5	Imai & Tomauchi	193,2
Strato 9	5,80	29,5	1,4	0,9	0,7	Imai & Tomauchi	221,4
Strato 10	6,00	32,8	0,9	1,1	0,8	Imai & Tomauchi	236,2
Strato 11	6,20	24,0	1,3	1,2	0,8	Imai & Tomauchi	195,2
Strato 12	6,40	36,0	0,9	1,2	0,9	Imai & Tomauchi	250,1
Strato 13	7,80	30,8	1,2	1,4	0,9	Imai & Tomauchi	227,3
Strato 14	8,00	36,1	1,1	1,6	1,0	Imai & Tomauchi	250,5
Strato 15	10,00	36,0	1,7	1,8	1,1	lmai & Tomauchi	250,1
Strato 16	10,20	36,5	1,1	2,0	1,3	Imai & Tomauchi	252,2
Strato 18	11,80	43,0	1,7	2,2	1,4	Imai & Tomauchi	278,7
Strato 20	12,20	55,8	3,0	2,4	1,5	Imai & Tomauchi	326,9

Strato 21	12,40	86,8	2,3	2,5	1,5	Imai & Tomauchi	428,1
Strato 22	12,80	76,8	3,1	2,5	1,5	Imai & Tomauchi	397,3
Strato 23	13,00	59,8	1,3	2,6	1,6	Imai & Tomauchi	341,0
Strato 24	13,20	55,9	2,1	2,6	1,6	Imai & Tomauchi	327,2
Strato 25	13,40	56,9	1,8	2,7	1,6	Imai & Tomauchi	330,8
Strato 26	13,60	44,9	2,0	2,7	1,6	Imai & Tomauchi	286,2
Strato 27	13,80	43,9	1,2	2,8	1,7	Imai & Tomauchi	282,3
Strato 28	14,00	41,9	1,4	2,8	1,7	Imai & Tomauchi	274,4
Strato 29	14,40	49,1	1,6	2,9	1,7	Imai & Tomauchi	302,3
Strato 30	14,60	37,1	1,9	2,9	1,8	Imai & Tomauchi	254,7
Strato 31	14,80	50,1	1,5	3,0	1,8	Imai & Tomauchi	306,0
Strato 32	15,40	37,5	2,0	3,1	1,8	Imai & Tomauchi	256,4
Strato 34	16,60	70,0	3,4	3,3	1,9	Imai & Tomauchi	375,4
Strato 35	16,80	79,3	2,6	3,4	2,0	Imai & Tomauchi	405,1
Strato 36	17,00	93,3	3,3	3,5	2,0	Imai & Tomauchi	447,5
Strato 37	17,80	65,8	1,5	3,6	2,1	Imai & Tomauchi	361,5
Strato 38	18,60	35,8	1,6	3,7	2,2	Imai & Tomauchi	249,2
Strato 40	19,20	79,2	3,1	3,9	2,3	Imai & Tomauchi	404,8
Strato 41	19,80	65,1	1,6	4,0	2,3	Imai & Tomauchi	359,1
Strato 43	20,60	129,9	5,3	4,2	2,4	Imai & Tomauchi	547,7
Strato 44	21,00	173,9	2,8	4,3	2,5	Imai & Tomauchi	654,6

	Prof. Strato	qc	fs	Tensione	Tensione litostatica	Correlazione	Ocr
	(m)	(Kg/cm ²)	(Kg/cm ²)	litostatica totale (Kg/cm²)	efficace (Kg/cm²)		
Strato 2	0,40	20,1	0,2	0,0	0,0	Larsson 1991 S.G.I.	<0.5
Strato 3	1,00	36,8	1,5	0,1	0,1	Larsson 1991 S.G.I.	0,5
Strato 4	1,20	36,3	1,1	0,2	0,2	Larsson 1991 S.G.I.	0,9
Strato 5	2,80	27,1	1,3	0,4	0,4	Larsson 1991 S.G.I.	1,
Strato 7	3,20	23,6	1,4	0,6	0,5	Larsson 1991 S.G.I.	< 0.:
Strato 9	5,80	29,5	1,4	0,9	0,7	Larsson 1991 S.G.I.	<0.:
Strato 10	6,00	32,8	0,9	1,1	0,8	Larsson 1991 S.G.I.	<0
Strato 11	6,20	24,0	1,3	1,2	0,8	Larsson 1991 S.G.I.	<0.:
Strato 12	6,40	36,0	0,9	1,2	0,9	Larsson 1991 S.G.I.	<0
Strato 13	7,80	30,8	1,2	1,4	0,9	Larsson 1991 S.G.I.	<0.:
Strato 14	8,00	36,1	1,1	1,6	1,0	Larsson 1991 S.G.I.	<0.:
Strato 15	10,00	36,0	1,7	1,8	1,1	Larsson 1991 S.G.I.	<0.:
Strato 16	10,20	36,5	1,1	2,0	1,3	Larsson 1991 S.G.I.	<0.:
Strato 18	11,80	43,0	1,7	2,2	1,4	Larsson 1991 S.G.I.	<0
Strato 20	12,20	55,8	3,0	2,4	1,5	Larsson 1991 S.G.I.	<0
Strato 21	12,40	86,8	2,3	2,5	1,5	Larsson 1991 S.G.I.	2,
Strato 22	12,80	76,8	3,1	2,5	1,5	Larsson 1991 S.G.I.	<0
Strato 23		59,8	1,3	2,6	1,6	Larsson 1991 S.G.I.	<0.
Strato 24	13,20	55,9	2,1	2,6	1,6	Larsson 1991 S.G.I.	<0
Strato 25		56,9	1,8	2,7	1,6	Larsson 1991 S.G.I.	<0.
Strato 26		44,9	2,0	2,7	1,6	Larsson 1991 S.G.I.	<0.
Strato 27	13,80	43,9	1,2	2,8	1,7	Larsson 1991 S.G.I.	<0.
Strato 28	14,00	41,9	1,4	2,8	1,7	Larsson 1991 S.G.I.	<0
Strato 29		49,1	1,6	2,9	1,7	Larsson 1991 S.G.I.	<0.
Strato 30	14,60	37,1	1,9	2,9	1,8	Larsson 1991 S.G.I.	<0.
Strato 31	14,80	50,1	1,5	3,0	1,8	Larsson 1991 S.G.I.	<0.
Strato 32	15,40	37,5	2,0	3,1	1,8	Larsson 1991 S.G.I.	<0.
Strato 34	16,60	70,0	3,4	3,3	1,9	Larsson 1991 S.G.I.	<0.
Strato 35	16,80	79,3	2,6	3,4	2,0	Larsson 1991 S.G.I.	<0.
Strato 36		93,3	3,3	3,5	2,0	Larsson 1991 S.G.I.	<0.
Strato 37		65,8		3,6	2,1	Larsson 1991 S.G.I.	<0.
Strato 38		35,8		3,7	2,2	Larsson 1991 S.G.I.	<0.
Strato 40		79,2		3,9	2,3	Larsson 1991 S.G.I.	<0.
Strato 41		65,1	1,6	4,0	2,3	Larsson 1991 S.G.I.	<0.
Strato 43		129,9		4,2	2,4	Larsson 1991 S.G.I.	2,
Strato 44		173,9		4,3	2,5	Larsson 1991 S.G.I.	1,

Modulo di reazione Ko

Modulo di re			v				
	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm ²)	Tensione litostatica totale	Tensione litostatica efficace	Correlazione	Ko
Strato 2	0,40	20,1	0,2	(Kg/cm ²)	(Kg/cm²) 0,0	Kulhawy & Mayne	0.00
				Ĺ		(1990)	0,00
Strato 3	1,00	36,8	1,5	0,1	0,1	Kulhawy & Mayne (1990)	1,39
Strato 4	1,20	36,3	1,1	0,2	0,2	Kulhawy & Mayne (1990)	0,93
Strato 5	2,80	27,1	1,3	0,4	0,4	Kulhawy & Mayne (1990)	0,50
Strato 7	3,20	23,6	1,4	0,6	0,5	Kulhawy & Mayne (1990)	0,35
Strato 9	5,80	29,5	1,4	0,9	0,7	Kulhawy & Mayne (1990)	0,35
Strato 10	6,00	32,8	0,9	1,1	0,8	Kulhawy & Mayne (1990)	0,33
Strato 11	6,20	24,0	1,3	1,2	0,8	Kulhawy & Mayne (1990)	0,27
Strato 12	6,40	36,0	0,9	1,2	0,9	Kulhawy & Mayne (1990)	0,34
Strato 13	7,80	30,8	1,2	1,4	0,9	Kulhawy & Mayne (1990)	0,29
Strato 14	8,00	36,1	1,1	1,6	1,0	Kulhawy & Mayne (1990)	0,31
Strato 15	10,00	36,0	1,7	1,8	1,1	Kulhawy & Mayne (1990)	0,29
Strato 16	10,20	36,5	1,1	2,0	1,3	Kulhawy & Mayne (1990)	0,27
Strato 18	11,80	43,0	1,7	2,2	1,4	Kulhawy & Mayne (1990)	0,28
Strato 20	12,20	55,8	3,0	2,4	1,5	Kulhawy & Mayne (1990)	0,32
Strato 21	12,40	86,8	2,3	2,5	1,5	Kulhawy & Mayne (1990)	0,42
Strato 22	12,80	76,8	3,1	2,5	1,5	Kulhawy & Mayne (1990)	0,39
Strato 23	13,00	59,8	1,3	2,6	1,6	Kulhawy & Mayne (1990)	0,32
Strato 24	13,20	55,9	2,1	2,6	1,6	Kulhawy & Mayne (1990)	0,31
Strato 25	13,40	56,9	1,8	2,7	1,6	Kulhawy & Mayne (1990)	0,31
Strato 26	13,60	44,9	2,0	2,7	1,6	Kulhawy & Mayne (1990)	0,26
Strato 27	13,80	43,9	1,2	2,8	1,7	Kulhawy & Mayne (1990)	0,25
Strato 28	14,00	41,9	1,4	2,8	1,7	Kulhawy & Mayne (1990)	0,25
Strato 29	14,40	49,1	1,6	2,9	1,7	Kulhawy & Mayne (1990)	0,27
Strato 30	14,60	37,1	1,9	2,9	1,8	Kulhawy & Mayne (1990)	0,00
Strato 31	14,80	50,1	1,5	3,0	1,8	Kulhawy & Mayne (1990)	0,27
Strato 32	15,40	37,5	2,0	3,1	1,8	Kulhawy & Mayne (1990)	0,00
Strato 34	16,60	70,0	3,4	3,3	1,9	Kulhawy & Mayne (1990)	0,31
Strato 35	16,80	79,3	2,6	3,4	2,0	Kulhawy & Mayne	0,33

						(1990)	
Strato 36	17,00	93,3	3,3	3,5	2,0	Kulhawy & Mayne (1990)	0,37
Strato 37	17,80	65,8	1,5	3,6	2,1	Kulhawy & Mayne (1990)	0,29
Strato 38	18,60	35,8	1,6	3,7	2,2	Kulhawy & Mayne (1990)	0,00
Strato 40	19,20	79,2	3,1	3,9	2,3	Kulhawy & Mayne (1990)	0,31
Strato 41	19,80	65,1	1,6	4,0	2,3	Kulhawy & Mayne (1990)	0,26
Strato 43	20,60	129,9	5,3	4,2	2,4	Kulhawy & Mayne (1990)	0,40
Strato 44	21,00	173,9	2,8	4,3	2,5	Kulhawy & Mayne (1990)	0,48

Peso unità di volume

	Prof.	qc	fs	Tensione	Tensione	Correlazione	Peso unità
	Strato	(Kg/cm²)	(Kg/cm²)	litostatica totale	litostatica efficace		di volume
	(m)			(Kg/cm²)	(Kg/cm²)		(t/m³)
Strato 2	0,40	20,1	0,2	0,0	0,0		1,9
Strato 3	1,00	36,8		0,1	0,1	Meyerhof	1,8
Strato 4	1,20	36,3	1,1	0,2	0,2	Meyerhof	1,8
Strato 5	2,80	27,1	1,3	0,4	0,4	Meyerhof	1,8
Strato 7	3,20	23,6	1,4	0,6	0,5		1,8
Strato 9	5,80	29,5	1,4	0,9	0,7	Meyerhof	1,8
Strato 10	6,00	32,8	0,9	1,1	0,8		1,8
Strato 11	6,20	24,0		1,2	0,8		1,8
Strato 12	6,40	36,0	0,9	1,2	0,9		1,8
Strato 13	7,80	30,8	1,2	1,4	0,9		1,8
Strato 14	8,00	36,1	1,1	1,6	1,0	Meyerhof	1,8
Strato 15	10,00	36,0	1,7	1,8	1,1	Meyerhof	1,8
Strato 16	10,20	36,5	1,1	2,0	1,3	Meyerhof	1,8
Strato 18	11,80	43,0	1,7	2,2	1,4	Meyerhof	1,8
Strato 20	12,20	55,8		2,4	1,5	Meyerhof	1,8
Strato 21	12,40	86,8		2,5	1,5	Meyerhof	1,8
Strato 22	12,80	76,8		2,5	1,5	Meyerhof	1,8
Strato 23	13,00	59,8		2,6	1,6	Meyerhof	1,8
Strato 24	13,20	55,9		2,6	1,6	Meyerhof	1,8
Strato 25	13,40	56,9	1,8	2,7	1,6	Meyerhof	1,8
Strato 26	13,60	44,9	2,0	2,7	1,6	Meyerhof	1,8
Strato 27	13,80	43,9	1,2	2,8	1,7	Meyerhof	1,8
Strato 28	14,00	41,9	1,4	2,8		Meyerhof	1,8
Strato 29	14,40	49,1	1,6	2,9	1,7	Meyerhof	1,8
Strato 30	14,60	37,1	1,9	2,9	1,8	Meyerhof	1,8
Strato 31	14,80	50,1	1,5	3,0	1,8	Meyerhof	1,8
Strato 32	15,40	37,5		3,1	1,8	Meyerhof	1,8
Strato 34	16,60	70,0	3,4	3,3	1,9	Meyerhof	1,8
Strato 35	16,80	79,3		3,4	2,0	Meyerhof	1,8
Strato 36	17,00	93,3		3,5	2,0		1,8
Strato 37	17,80			3,6	2,1		1,8
Strato 38	18,60			3,7	2,2		1,8
Strato 40	19,20			3,9	2,3		1,8
Strato 41	19,80		1,6	4,0			1,8
Strato 43	20,60			4,2	2,4		1,8
Strato 44	21,00						1,9

Peso unità di volume saturo

	Prof. Strato	qc	fs	Tensione	Tensione litostatica	Correlazione	Peso unità di
	(m)	(Kg/cm ²)	(Kg/cm ²)	litostatica totale	efficace		volume sat.
		_		(Kg/cm ²)	(Kg/cm ²)		(t/m³)
Strato 2	0,40	20,1	0,2	0,0	0,0	Meyerhof	2,2

Strato 3	1,00	36,8	1,5	0,1	0,1	Meyerhof	2,
Strato 4	1,20	36,3	1,1	0,2	0,2	Meyerhof	2,1
Strato 5	2,80	27,1	1,3	0,4	0,4	Meyerhof	2,
Strato 7	3,20	23,6	1,4	0,6	0,5	Meyerhof	2,1
Strato 9	5,80	29,5	1,4	0,9	0,7	Meyerhof	2,1
Strato 10	6,00	32,8	0,9	1,1	0,8	Meyerhof	2,1
Strato 11	6,20	24,0	1,3	1,2	0,8	Meyerhof	2,1
Strato 12	6,40	36,0	0,9	1,2	0,9	Meyerhof	2,1
Strato 13	7,80	30,8	1,2	1,4	0,9	Meyerhof	2,
Strato 14	8,00	36,1	1,1	1,6	1,0	Meyerhof	2,1
Strato 15	10,00	36,0	1,7	1,8	1,1	Meyerhof	2,1
Strato 16	10,20	36,5	1,1	2,0	1,3	Meyerhof	2,1
Strato 18	11,80	43,0	1,7	2,2	1,4	Meyerhof	2,1
Strato 20	12,20	55,8	3,0	2,4	1,5	Meyerhof	2,1
Strato 21	12,40	86,8	2,3	2,5	1,5	Meyerhof	2,1
Strato 22	12,80	76,8	3,1	2,5	1,5	Meyerhof	2,
Strato 23	13,00	59,8	1,3	2,6	1,6	Meyerhof	2,
Strato 24	13,20	55,9	2,1	2,6	1,6	Meyerhof	2,
Strato 25	13,40	56,9	1,8	2,7	1,6	Meyerhof	2,
Strato 26	13,60	44,9	2,0	2,7	1,6	Meyerhof	2,
Strato 27	13,80	43,9	1,2	2,8	1,7	Meyerhof	2,
Strato 28	14,00	41,9	1,4	2,8	1,7	Meyerhof	2,
Strato 29	14,40	49,1	1,6	2,9	1,7	Meyerhof	2,
Strato 30	14,60	37,1	1,9	2,9	1,8	Meyerhof	2,
Strato 31	14,80	50,1	1,5	3,0	1,8	Meyerhof	2,1
Strato 32	15,40	37,5	2,0	3,1	1,8	Meyerhof	2,1
Strato 34	16,60	70,0	3,4	3,3	1,9	Meyerhof	2,
Strato 35	16,80	79,3	2,6	3,4	2,0	Meyerhof	2,
Strato 36	17,00	93,3	3,3	3,5	2,0	Meyerhof	2,
Strato 37	17,80	65,8	1,5	3,6	2,1	Meyerhof	2,
Strato 38	18,60	35,8	1,6	3,7	2,2	Meyerhof	2,1
Strato 40	19,20	79,2	3,1	3,9	2,3	Meyerhof	2,1
Strato 41	19,80	65,1	1,6	4,0	2,3	Meyerhof	2,1
Strato 43	20,60	129,9	5,3	4,2	2,4	Meyerhof	2,1
Strato 44	21,00	173,9	2,8	4,3	2,5	Meyerhof	2,2

Liquefazione - Accelerazione sismica massima (g)=0,25

	Prof. Strato		fs	Tensione	Tensione litostatica	Correlazione	Fattore di
	(m)	(Kg/cm ²)	(Kg/cm ²)	litostatica totale	efficace		sicurezza a
		<u> </u>		(Kg/cm ²)	(Kg/cm ²)		liquefazione
Strato 2	0,40	20,1	0,2	0,0	0,0	Robertson & Wride 1997	1,308
Strato 3	1,00	36,8	1,5	0,1	0,1	Robertson & Wride 1997	11,687
Strato 4	1,20	36,3	1,1	0,2	0,2	Robertson & Wride 1997	7,338
Strato 5	2,80	27,1	1,3	0,4	0,4	Robertson & Wride 1997	10,823
Strato 7	3,20	23,6	1,4	0,6	0,5	Robertson & Wride 1997	3,745
Strato 9	5,80	29,5	1,4	0,9	0,7	Robertson & Wride 1997	3,126
Strato 10	6,00	32,8	0,9	1,1	0,8	Robertson & Wride 1997	1,397
Strato 11	6,20	24,0	1,3	1,2	0,8	Robertson & Wride 1997	1,132
Strato 12	6,40	36,0	0,9	1,2	0,9	Robertson & Wride 1997	1,48
Strato 13	7,80	30,8	1,2	1,4	0,9	Robertson & Wride 1997	1,274
Strato 14	8,00	36,1	1,1	1,6	1,0	Robertson & Wride 1997	1,272

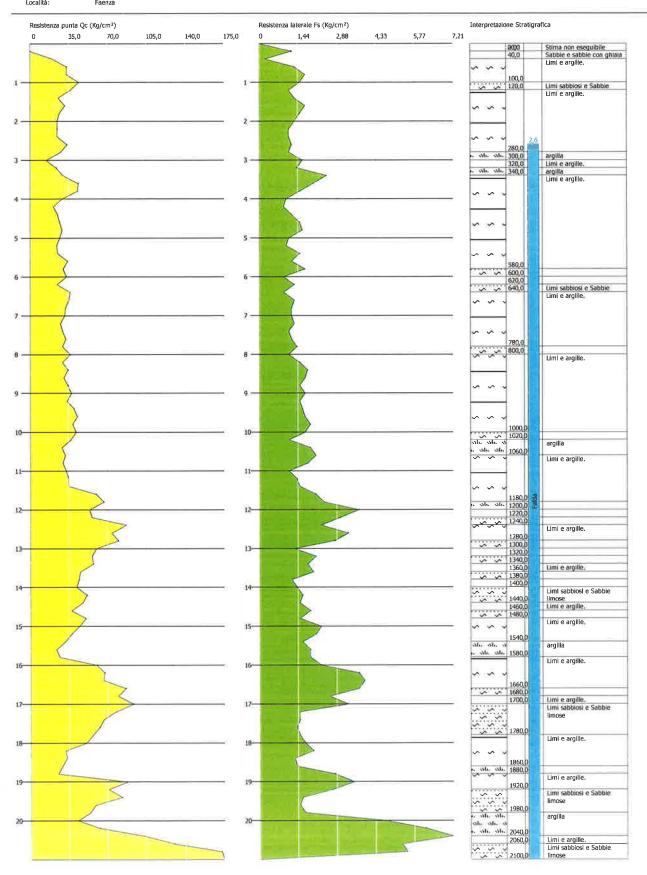
1,744	Robertson & Wride 1997	1,1	1,8	1,7	36,0	10,00	Strato 15
0,874	Robertson & Wride 1997	1,3	2,0	1,1	36,5	10,20	Strato 16
1,667	Robertson & Wride 1997	1,4	2,2	1,7	43,0	11,80	Strato 18
5,922	Robertson & Wride 1997	1,5	2,4	3,0	55,8	12,20	Strato 20
11,293	Robertson & Wride 1997	1,5	2,5	2,3	86,8	12,40	Strato 21
12,401	Robertson & Wride 1997	1,5	2,5	3,1	76,8	12,80	Strato 22
1,761	Robertson & Wride 1997	1,6	2,6	1,3	59,8	13,00	Strato 23
2,827	Robertson & Wride 1997	1,6	2,6	2,1	55,9	13,20	Strato 24
2,282	Robertson & Wride 1997	1,6	2,7	1,8	56,9	13,40	Strato 25
1,603	Robertson & Wride 1997	1,6	2,7	2,0	44,9	13,60	Strato 26
0,85	Robertson & Wride 1997	1,7	2,8	1,2	43,9	13,80	Strato 27
0,907	Robertson & Wride 1997	1,7	2,8	1,4	41,9	14,00	Strato 28
1,32	Robertson & Wride 1997	1,7	2,9	1,6	49,1	14,40	Strato 29
0,985	Robertson & Wride 1997	1,8	2,9	1,9	37,1	14,60	Strato 30
1,204	Robertson & Wride 1997	1,8	3,0	1,5	50,1	14,80	Strato 31
1,015	Robertson & Wride 1997	1,8	3,1	2,0	37,5	15,40	Strato 32
6,893	Robertson & Wride 1997	1,9	3,3	3,4	70,0	16,60	Strato 34
5,561	Robertson & Wride 1997	2,0	3,4	2,6	79,3	16,80	Strato 35
12,136	Robertson & Wride 1997	2,0	3,5	3,3	93,3	17,00	Strato 36
1,599	Robertson & Wride 1997	2,1	3,6	1,5	65,8	17,80	Strato 37
0,688	Robertson & Wride 1997	2,2	3,7	1,6	35,8	18,60	Strato 38
5,757	Robertson & Wride 1997	2,3	3,9	3,1	79,2	19,20	Strato 40
1,446	Robertson & Wride 1997	2,3	4,0	1,6	65,1	19,80	Strato 41
45,587	Robertson & Wride 1997	2,4	4,2	5,3	129,9	20,60	Strato 43
38,05	Robertson & Wride 1997	2,5	4,3	2,8	173,9	21,00	Strato 44

Velocità onde di taglio.

	Prof. Strato	qc	fs	Tensione	Tensione litostatica	Correlazione	Vs
	(m)	(Kg/cm ²)	(Kg/cm ²)	litostatica totale	efficace		(m/s)
				(Kg/cm ²)	(Kg/cm ²)		
Strato 2	0,40	20,1	0,2	0,0	0,0	Jamiolkowski et	282,67
						al 1985	
Strato 3	1,00	36,8	1,5	0,1	0,1	Jamiolkowski et	325,84
						al 1985	
Strato 4	1,20	36,3	1,1	0,2	0,2	Jamiolkowski et	324,79
						al 1985	
Strato 5	2,80	27,1	1,3	0,4	0,4	Jamiolkowski et	303,23

Strato 7	3,20	23,6	1,4	0,6	0,5		293,53
Strato 9	5,80	29,5	1,4	0,9	0,7	al 1985 Jamiolkowski et	309,34
Strato 10	6,00	32,8	0,9	1,1	0,8	al 1985 Jamiolkowski et al 1985	317,14
Strato 11	6,20	24,0	1,3	1,2	0,8	Jamiolkowski et al 1985	294,70
Strato 12	6,40	36,0	0,9	1,2	0,9		324,16
Strato 13	7,80	30,8	1,2	1,4	0,9		312,49
Strato 14	8,00	36,1	1,1	1,6	1,0		324,37
Strato 15	10,00	36,0	1,7	1,8	1,1	Jamiolkowski et al 1985	324,16
Strato 16	10,20	36,5	1,1	2,0	1,3	Jamiolkowski et al 1985	325,21
Strato 18	11,80	43,0	1,7	2,2	1,4	Jamiolkowski et al 1985	337,98
Strato 20	12,20	55,8	3,0	2,4	1,5	Jamiolkowski et al 1985	359,32
Strato 21	12,40	86,8	2,3	2,5	1,5	Jamiolkowski et al 1985	398,64
Strato 22	12,80	76,8	3,1	2,5	1,5	Jamiolkowski et al 1985	387,33
Strato 23	13,00	59,8	1,3	2,6	1,6	Jamiolkowski et al 1985	365,22
Strato 24	13,20	55,9	2,1	2,6	1,6	Jamiolkowski et al 1985	359,47
Strato 25	13,40	56,9	1,8	2,7	1,6	Jamiolkowski et al 1985	360,97
Strato 26	13,60	44,9	2,0	2,7	1,6	Jamiolkowski et al 1985	341,43
Strato 27	13,80	43,9	1,2	2,8	1,7	Jamiolkowski et al 1985	339,63
Strato 28 Strato 29	14,00	41,9	1,4	2,8	1,7	Jamiolkowski et al 1985	335,93
Strato 30	14,40	49,1 37,1	1,6	2,9	1,7	Jamiolkowski et al 1985 Jamiolkowski et	348,68
Strato 31	14,80	50,1	1,5	3,0	1,8	al 1985 Jamiolkowski et	350,34
Strato 32	15,40	37,5	2,0	3,1	1,8	al 1985 Jamiolkowski et	327,28
Strato 34	16,60	70,0	3,4	3,3	1,9	al 1985 Jamiolkowski et	378,99
Strato 35	16,80	79,3	2,6	3,4	2,0	al 1985 Jamiolkowski et	390,26
Strato 36	17,00	93,3	3,3	3,5	2,0	al 1985 Jamiolkowski et	405,46
Strato 37	17,80	65,8	1,5	3,6	2,1	al 1985 Jamiolkowski et	373,51
Strato 38	18,60	35,8	1,6	3,7	2,2	al 1985 Jamiolkowski et	323,73
Strato 40	19,20	79,2	3,1	3,9	2,3	al 1985 Jamiolkowski et	390,14
Strato 41	19,80	65,1	1,6	4,0	2,3	al 1985 Jamiolkowski et	372,58
Strato 43	20,60	129,9	5,3	4,2		al 1985 Jamiolkowski et	438,25

						al 1985	
Strato 44	21,00	173,9	2,8	4,3	2,5	Jamiolkowski et	469,35
						al 1985	


Permeabilità

Permeabilità							
	Prof. Strato	qc	fs	Tensione	Tensione litostatica	Correlazione	K
	(m)	(Kg/cm ²)	(Kg/cm ²)	litostatica totale	efficace		(cm/s)
				(Kg/cm ²)	(Kg/cm ²)		
Strato 1	0,20	0,0	1,2	0,0	0,0	1988	*
Strato 2	0,40	20,1	0,2	0,0	0,0	Piacentini-Righi 1988	1,00E-03
Strato 3	1,00	36,8	1,5	0,1	0,1	Piacentini-Righi 1988	2,95E-08
Strato 4	1,20	36,3	1,1	0,2	0,2	Piacentini-Righi 1988	5,23E-06
Strato 5	2,80	27,1	1,3	0,4	0,4	Piacentini-Righi 1988	1,09E-09
Strato 6	3,00	14,4	1,6	0,5	0,5	Piacentini-Righi 1988	1,00E-11
Strato 7	3,20	23,6	1,4	0,6	0,5		1,00E-11
Strato 8	3,40	29,6	2,5	0,6	0,6	Piacentini-Righi 1988	1,00E-11
Strato 9	5,80	29,5	1,4	0,9	0,7	Piacentini-Righi 1988	1,18E-09
Strato 10	6,00	32,8	0,9	1,1	0,8	Piacentini-Righi 1988	1,96E-05
Strato 11	6,20	24,0	1,3	1,2	0,8	Piacentini-Righi 1988	4,39E-11
Strato 12	6,40	36,0	0,9	1,2	0,9	Piacentini-Righi 1988	5,40E-05
Strato 13	7,80	30,8	1,2	1,4	0,9	Piacentini- Righi 1988	9,91E-08
Strato 14	8,00	36,1	1,1	1,6	1,0	Piacentini- Righi 1988	4,86E-06
Strato 15		36,0	1,7	1,8	1,1	Piacentini- Righi 1988	7,77E-10
Strato 16		36,5	1,1	2,0	1,3	Piacentini- Righi 1988	5,62E-06
Strato 17		30,0	2,0	2,1	1,3	Piacentini- Righi 1988	1,00E-11
Strato 18		43,0	1,7	2,2	1,4	Piacentini- Righi 1988	4,28E-08
Strato 19		53,7				Piacentini- Righi 1988	
Strato 20		55,8	3,0	2,4	1,5	Piacentini- Righi 1988	1,00E-11
Strato 21		86,8	2,3	2,5	1,5	Piacentini- Righi 1988	1,61E-05
Strato 22		76,8	3,1	2,5	1,5	Piacentini- Righi 1988	5,20E-09
Strato 23		59,8	1,3	2,6	1,6	Righi 1988	1,85E-04
Strato 24		55,9		2,6	1,6	Piacentini- Righi 1988	7,63E-08
Strato 25		56,9			1,6	Righi 1988	1,85E-06
Strato 26		44,9		2,7	1,6	Piacentini- Righi 1988	2,04E-09
Strato 27	13,80	43,9	1,2	2,8	1,7	Piacentini- Righi 1988	1,79E-05

Strato 28	14,00	41,9	1,4	2,8	1,7	Piacentini-	1,07E-06
	11.12					Righi 1988	
Strato 29	14,40	49,1	1,6	2,9	1,7	Piacentini-	1,36E-06
						Righi 1988	
Strato 30	14,60	37,1	1,9	2,9	1,8	Piacentini-	5,57E-11
						Righi 1988	
Strato 31	14,80	50,1	1,5	3,0	1,8	Piacentini-	4,87E-06
	,		.,-	-,-	177	Righi 1988	.,
Strato 32	15,40	37,5	2,0	3,1	1,8	Piacentini-	1,25E-11
Otrato 02	10, 10	01,0	2,0	0, 1	1,5	Righi 1988	1,206-11
Strato 33	15,80	24,7	1,9	3,2	1.0		1,00E-11
Strato 33	15,60	24,7	1,9	3,2	1,9	Piacentini-	1,000-11
01104	40.00	70.0	0.4			Righi 1988	4 445 44
Strato 34	16,60	70,0	3,4	3,3	1,9	Piacentini-	1,44E-11
						Righi 1988	
Strato 35	16,80	79,3	2,6	3,4	2,0	Piacentini-	6,03E-07
						Righi 1988	
Strato 36	17,00	93,3	3,3	3,5	2,0	Piacentini-	8,35E-08
						Righi 1988	.
Strato 37	17,80	65,8	1,5	3,6	2,1	Piacentini-	1,12E-04
	, , , , ,	,-	.,-	-,-	_,	Righi 1988	.,
Strato 38	18,60	35,8	1,6	3,7	2,2	Piacentini-	3,50E-09
Otrato 55	10,00	55,5	1,0	5,7	۷,۷	Righi 1988	3,30L-03
Strato 39	18,80	24,6	2,8	3,8	2.2	Piacentini-	1,00E-11
Strato 39	10,00	24,6	2,0	3,0	2,2		1,00E-11
01 1 10	10.00	70.0	- 0.4			Righi 1988	
Strato 40	19,20	79,2	3,1	3,9	2,3	Piacentini-	1,09E-08
						Righi 1988	
Strato 41	19,80	65,1	1,6	4,0	2,3	Piacentini-	5,04E-05
						Righi 1988	
Strato 42	20,40	69,5	6,0	4,1	2,4	Piacentini-	1,00E-11
					·	Righi 1988	,
Strato 43	20,60	129,9	5,3	4,2	2,4	Piacentini-	2,61E-10
3	_5,55	.25,5	5,0	1,4-	2,1	Righi 1988	_,5 10
Strato 44	21,00	173,9	2,8	4,3	2,5	Piacentini-	1,57E-03
Strato 74	21,00	173,3	2,0	4,3	2,5		1,37 =-03
						Righi 1988	

Committente: Cantiere; Località: CAVIRO park Faenza

Data: 17/10/2013

